

Комплексные решения для построения сетей

Коммутаторы Ethernet

MES23xx, MES33xx, MES35xx, MES53xx

Мониторинг и управление Ethernet-коммутаторами MES по SNMP, версия ПО 4.0.16.2

Версия документа	Дата выпуска	Содержание изменений	
Версия 1.10	31.07.2021	Синхронизация с версией ПО 4.0.16.2	
Версия 1.9	30.03.2021	Изменены разделы:	
		19.2 Статистика QoS	
Версия 1.8	02.03.2021	Синхронизация с версией ПО 4.0.15.3	
Версия 1.7	10.02.2021	Изменены разделы:	
		6.1 Параметры Ethernet-интерфейсов	
Версия 1.6	28.11.2020	Изменены разделы:	
		10.2 Настройка протокола Spanning-tree	
Версия 1.5	27.10.2020	Добавлен раздел:	
		18 Конфигурация защиты от DoS-атак	
Версия 1.4	16.10.2020	Синхронизация с версией 4.0.14.2	
Версия 1.3	14.09.2020	Изменены разделы:	
		16.3 Защита IP-адреса клиента (IP source Guard)	
Версия 1.2	19.02.2020	Добавлены разделы:	
		4.3 Параметры стэка	
		8 Настройка IPv6-адресации	
		15 Электропитание по линиям Ethernet (POE)	
		Изменены разделы:	
		1 Настройка SNMP-сервера и отправки SNMP-TRAP	
		2 Краткие обозначения	
		4.1 Системные ресурсы	
		4.2 Системные параметры	
		4.4 Управление устройством	
		5 Настройка системного времени	
		6.1 Параметры Ethernet-интерфейсов	
		6.3 Настройка и мониторинг errdisable-состояния	
		10.2 Настройка протокола Spanning-tree	
		12.1 Механизм ААА	
		12.2 Настройка доступа	
		13 Зеркалирование портов	
		16.6 Механизм обнаружения петель (loopback-detection)	
Версия 1.1	13.07.2018	Первая публикация.	
Версия	4.0.16.2		
программного			
обеспечения			

СОДЕРЖАНИЕ

1	НАСТРОЙКА SNMP-СЕРВЕРА И ОТПРАВКИ SNMP-TRAP	6
2	КРАТКИЕ ОБОЗНАЧЕНИЯ	6
3	РАБОТА С ФАЙЛАМИ	9
3.1	Сохранение конфигурации	9
3.2	Работа с ТFTP-сервером	
3.3	Автоконфигурирование коммутатора	
3.4	Обновление программного обеспечения	
4	УПРАВЛЕНИЕ СИСТЕМОЙ	16
. 4 1	Системные ресурсы	16
4.2	Системные параметры	24
4.2 A 3	Папаметры стака	24
4.5	Иправление устройством	27
5		
6 1	КОПФИЛУРИРОВАНИЕ ИПТЕРФЕНСОВ	
6.1	Параметры спепес-интерфенсов	
0.2	конфигурирование усам	
6.3	Настроика и мониторинг erraisable-состояния	
6.4	Настроика voice vian	
6.5	Настройка LLDP	52
7	НАСТРОИКА IPV4-АДРЕСАЦИИ	54
8	НАСТРОИКА IPV6-АДРЕСАЦИИ	56
9	HACTPOЙKA GREEN ETHERNET	57
10	НАСТРОЙКА КОЛЬЦЕВЫХ ПРОТОКОЛОВ	58
10.1	Протокол ERPS	58
10.2	Настройка протокола Spanning-tree	60
11	ГРУППОВАЯ АДРЕСАЦИЯ	64
11.1	Правила групповой адресации (multicast addressing)	64
11.2	Функции ограничения multicast-трафика	66
12	ФУНКЦИИ УПРАВЛЕНИЯ	69
12.1	Механизм ААА	69
12.2	Настройка доступа	72
13	ЗЕРКАЛИРОВАНИЕ ПОРТОВ	74
14	ФУНКЦИИ ДИАГНОСТИКИ ФИЗИЧЕСКОГО УРОВНЯ	75
14.1	Диагностика медного кабеля	75
14.2	Диагностика оптического трансивера	
15	ЭЛЕКТРОПИТАНИЕ ПО ЛИНИЯМ ETHERNET (POE)	
16		82
16 1	Функции обеспечения защиты портов	82
16.2	Контроль протокола DHCP и опция 82	86
16.3	Защита IP-адреса клиента (IP source Guard)	89
16.4	Контроль протокола ARP (ARP Inspection)	90
16.5		
16.5	Merzyurza ofuznyweurza netezt (loonback-detection)	
16.7		
10.7		
10		
10 10	ινοτηφηματαταμή σαιμητού ΟΤ 2003-ΑΤΑΝ	104 105
10 1		
19.1	пастроика цоз	
19.2	Статистика цоз	
20	МАРШРУТИЗАЦИЯ	
20.1	Статическая маршрутизация	
20.2	Динамическая маршрутизация	109

ПРИЛОЖЕНИЕ А. МЕТОДИКА РАСЧЕТА БИТОВОЙ МАСКИ	111
ПРИЛОЖЕНИЕ Б: ПРИМЕР СОЗДАНИЯ ТИПОВОГО IP ACL	112
ПРИЛОЖЕНИЕ В: ПРИМЕР СОЗДАНИЯ, НАПОЛНЕНИЯ И УДАЛЕНИЯ OFFSET-LIST С ПРИВЯЗКОЙ К МАС	C ACL
	119

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

Обозначение	Описание	
[]	В квадратных скобках в командной строке указываются необязательные параметры, но их ввод предоставляет определенные дополнительные опции.	
{}	В фигурных скобках в командной строке указываются обязательные параметры.	
«,» «-»	Данные знаки в описании команды используются для указания диапазонов.	
« »	Данный знак в описании команды обозначает «или».	
«/»	Данный знак при указании значений переменных разделяет возможные значения и значения по умолчанию.	
Курсив Calibri	Курсивом Calibri указываются переменные или параметры, которые необходимо заменить соответствующим словом или строкой.	
Полужирный курсив	Полужирным курсивом выделены примечания и предупреждения.	
<Полужирный курсив>	Полужирным курсивом в угловых скобках указываются названия клавиш на клавиатуре.	
Courier New	Полужирным Шрифтом Courier New записаны примеры ввода команд.	

Примечания и предупреждения

Примечания содержат важную информацию, советы или рекомендации по использованию и настройке устройства.

Предупреждения информируют пользователя о ситуациях, которые могут нанести вред устройству или человеку, привести к некорректной работе устройства или потере данных.

Aeltex

1 НАСТРОЙКА SNMP-СЕРВЕРА И ОТПРАВКИ SNMP-TRAP

snmp-server server snmp-server community public ro snmp-server community private rw snmp-server host 192.168.1.1 traps version 2c private

2 КРАТКИЕ ОБОЗНАЧЕНИЯ

• ifIndex - индекс порта;

Может принимать следующие значения:

1. Коммутаторы доступа

Модель коммутатора	Индексы	
	- индексы 49-96 — gigabitethernet 1/0/1-48;	
	- индексы 157-204 — gigabitethernet 2/0/1-48;	
	- индексы 256-303 — gigabitethernet 3/0/1-48;	
	- индексы 373-420 — gigabitethernet 4/0/1-48;	
MES2308	- индексы 481-528 — gigabitethernet 5/0/1-48;	
MES2308R	- индексы 589-636 — gigabitethernet 6/0/1-48;	
MES2308P	- индексы 697-744 — gigabitethernet 7/0/1-48;	
MES2324	- индексы 805-852 — gigabitethernet 8/0/1-48;	
MES2324B	- индексы 105-108 — tengigabitethernet 1/0/1-4;	
MES2324F	- индексы 213-216 — tengigabitethernet 2/0/1-4;	
MES2324FB MES2348	- индексы 321-324 — tengigabitethernet 3/0/1-4;	
MES2348B	- индексы 429-432 — tengigabitethernet 4/0/1-4;	
MES2324P	- индексы 537-540 — tengigabitethernet 5/0/1-4;	
MES2348P	- индексы 645-648 — tengigabitethernet 6/0/1-4;	
	- индексы 753-756 — tengigabitethernet 7/0/1-4;	
	- индексы 861-864 — tengigabitethernet 8/0/1-4;	
	- индексы 1000-1047 — Port-Channel 1/0/1-48;	
	- индексы 100000-104095 — VLAN 1-4096.	

2. Коммутаторы агрегации

Модель коммутатора	Индексы
MES3324	- индексы 49-96 — gigabitethernet 1/0/1-48;
MES3324F	- индексы 157-204 — gigabitethernet 2/0/1-48;
MES3308F	- индексы 256-303 — gigabitethernet 3/0/1-48;
MES3316F	440/2 $272/20$ gigshitotherpot $4/0/1/4$
MES3348	- индексы 575-420 — gigabitethethet 470/1-40,
MES3348F	- индексы 481-528 — gigabitethernet 5/0/1-48;

- индексы 589-636 — gigabitethernet 6/0/1-48;
- индексы 697-744 — gigabitethernet 7/0/1-48;
- индексы 805-852 — gigabitethernet 8/0/1-48;
- индексы 105-108 — tengigabitethernet 1/0/1-4;
- индексы 105-108 — tengigabitethernet 1/0/1-4;
- индексы 213-216 — tengigabitethernet 2/0/1-4;
- индексы 321-324 — tengigabitethernet 3/0/1-4;
- индексы 429-432 — tengigabitethernet 4/0/1-4;
- индексы 537-540 — tengigabitethernet 5/0/1-4;
- индексы 645-648 — tengigabitethernet 6/0/1-4;
- индексы 753-756 — tengigabitethernet 7/0/1-4;
- индексы 861-864 — tengigabitethernet 8/0/1-4;
- индексы 1000-1047 — Port-Channel 1/0/1-48;
- индексы 100000-104095 — VLAN 1-4096.

3. Индустриальные коммутаторы

Модель коммутатора	Индексы
MES3508	- индексы 49-62 — gigabitethernet 1/0/1-14;
MES3508P	- индексы 1000-1047 — Port-Channel 1/0/1-48;
MES3510P	- индексы 100000-104095 — VLAN 1-4096.

4. Коммутаторы для ЦОД

Модель коммутатора	Индексы	
	- индексы 1-24 — tengigabitethernet 1/0/1-24;	
	- индексы 53-76 — tengigabitethernet 2/0/1-24;	
	- индексы 105-128 — tengigabitethernet 3/0/1-24;	
	- индексы 157-180 — tengigabitethernet 4/0/1-24;	
	- индексы 209-232 — tengigabitethernet 5/0/1-24;	
	- индексы 261-284 — tengigabitethernet 6/0/1-24;	
	- индексы 313-336 — tengigabitethernet 7/0/1-24;	
	- индексы 365-388 — tengigabitethernet 8/0/1-24;	
MES5324	- индексы 25-28 — fortygigabitethernet1/0/1-4;	
	- индексы 77-80 — fortygigabitethernet2/0/1-4;	
	- индексы 129-132 — fortygigabitethernet3/0/1-4;	
	- индексы 181-184 — fortygigabitethernet4/0/1-4;	
	- индексы 233-236 — fortygigabitethernet5/0/1-4;	
	- индексы 285-288 — fortygigabitethernet6/0/1-4;	
	- индексы 337-340 — fortygigabitethernet7/0/1-4;	
	- индексы 389-392 — fortygigabitethernet8/0/1-4;	

Aeltex

- индексы 1000-1047 — Port-Channel 1/0/1-48;
- индексы 100000-104095 — VLAN 1-4096.

- index-of-rule индекс правила в ACL. Всегда кратен 20! Если при создании правил будут указаны индексы не кратные 20, то после перезагрузки коммутатора порядковые номера правил в ACL станут кратны 20;
- Значение поля N в IP и MAC ACL любое правило занимает от одного до 3 полей в зависимости от его структуры;
- IP address IP-адрес для управления коммутатором;

В приведенных в документе примерах используется следующий IP-адрес для управления: **192.168.1.30**;

• ip address of tftp server — IP-адрес TFTP-сервера;

В приведенных в документе примерах используется следующий IP-адрес TFTP-сервера: **192.168.1.1**;

• community — строка сообщества (пароль) для доступа по протоколу SNMP.

В приведенных в документе примерах используются следующие community:

private — права на запись (rw); *public* — права на чтение (ro).

3 РАБОТА С ФАЙЛАМИ

3.1 Сохранение конфигурации

Сохранение конфигурации в энергонезависимую память

MIB: rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.7.1 i {runningConfig(2)} \
1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.12.1 i {startupConfig (3)} \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}
```

Пример

```
Команда CLI:
copy running-config startup-config
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \
1.3.6.1.4.1.89.87.2.1.7.1 i 2 \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.12.1 i 3 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

Сохранение конфигурации в энергозависимую память из энергонезависимой:

MIB: rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.7.1 i {startupConfig (3)} \
1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.12.1 i {runningConfig(2)} \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}
```

Пример

Kоманда CLI: copy startup-config running-config

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \
1.3.6.1.4.1.89.87.2.1.7.1 i 3 \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.12.1 i 2 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

Удаление конфигурации из энергонезависимой памяти

MIB: RADLAN-rndMng

Используемые таблицы: rndAction — 1.3.6.1.4.1.89.1.2

snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.1.2.0 i {eraseStartupCDB (20)}

Пример удаления startup-config

```
Команда CLI:
delete startup-config
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.1.2.0 i 20
```

3.2 Работа с ТГТР-сервером

Копирование конфигурации из энергозависимой памяти на TFTP-сервер

MIB: RADLAN-COPY-MIB

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.7.1 i {runningConfig(2)} \
1.3.6.1.4.1.89.87.2.1.8.1 i {tftp(3)} \
1.3.6.1.4.1.89.87.2.1.9.1 a {ip address of tftp server} \
1.3.6.1.4.1.89.87.2.1.11.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}
```

Пример копирования из running-config на TFTP-сервер

```
Команда CLI:
copy running-config tftp://192.168.1.1/MES-config.cfg
Команда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \
1.3.6.1.4.1.89.87.2.1.7.1 i 2 \
1.3.6.1.4.1.89.87.2.1.8.1 i 3 \
1.3.6.1.4.1.89.87.2.1.9.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.11.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

Копирование конфигурации в энергозависимую память с ТГТР-сервера

MIB: rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {tftp(3)} \
1.3.6.1.4.1.89.87.2.1.4.1 a {ip address of tftp server} \
1.3.6.1.4.1.89.87.2.1.6.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.12.1 i {runningConfig(2)} \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}
```

Пример копирования с TFTP-сервера в running-config

```
Команда CLI:
copy tftp://192.168.1.1/MES-config.cfg running-config
Kоманда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 3 \
1.3.6.1.4.1.89.87.2.1.4.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.6.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.12.1 i 2 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

Копирование конфигурации из энергонезависимой памяти на TFTP-сервер

MIB: файл rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.7.1 i {startupConfig (3)} \
1.3.6.1.4.1.89.87.2.1.8.1 i {tftp(3)} \
1.3.6.1.4.1.89.87.2.1.9.1 a {ip address of tftp server} \
1.3.6.1.4.1.89.87.2.1.11.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}
```

Пример копирования из startup-config на TFTP-сервер

```
Команда CLI:

сору startup-config tftp://192.168.1.1/MES-config.cfg

Команда SNMP:

snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \

1.3.6.1.4.1.89.87.2.1.3.1 i 1 \

1.3.6.1.4.1.89.87.2.1.7.1 i 3 \

1.3.6.1.4.1.89.87.2.1.8.1 i 3 \

1.3.6.1.4.1.89.87.2.1.9.1 a 192.168.1.1 \

1.3.6.1.4.1.89.87.2.1.11.1 s "MES-config.cfg" \

1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

Копирование конфигурации в энергонезависимую память с TFTP-сервера

MIB: RADLAN-COPY-MIB

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {tftp(3)} \
1.3.6.1.4.1.89.87.2.1.4.1 a {ip address of tftp server} \
1.3.6.1.4.1.89.87.2.1.6.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.12.1 i {startupConfig (3)} \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}
```

Пример копирования startup-config с TFTP-сервера

```
Команда CLI:
boot config tftp://192.168.1.1/MES-config.cfg
Команда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 3 \
1.3.6.1.4.1.89.87.2.1.4.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.6.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.12.1 i 3 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

3.3 Автоконфигурирование коммутатора

<u>Включение автоматического конфигурирования, базирующегося на DHCP (включено по умолчанию)</u>

MIB: radlan-dhcpcl-mib.mib

Используемые таблицы: rlDhcpClOption67Enable — 1.3.6.1.4.1.89.76.9

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.76.9.0 i {enable(1), disable(2)}
```

Пример

```
Komaндa CLI:
boot host auto-config
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.76.9.0 i 1
```

3.4 Обновление программного обеспечения

Обновление программного обеспечения коммутатора

Проходит в два этапа:

1. Загрузка образа ПО

MIB: RADLAN-COPY-MIB

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {tftp (3)} \
1.3.6.1.4.1.89.87.2.1.4.1 a {ip add of tftp server} \
1.3.6.1.4.1.89.87.2.1.6.1 s "image name" \
1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.12.1 i {image(8)} \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo(4)}
```

Пример

```
Команда CLI:
boot system tftp://192.168.1.1/mes3300-409-R478.ros
```

```
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 3 \
1.3.6.1.4.1.89.87.2.1.4.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.6.1 s "mes3300-409-R478.ros" \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 1.3.6.1.4.1.89.87.2.1.12.1 i 8 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

2. Смена активного образа коммутатора

MIB: RADLAN-DEVICEPARAMS-MIB

Используемые таблицы: rndActiveSoftwareFileAfterReset — 1.3.6.1.4.1.89.2.13.1.1.3

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.2.13.1.1.3.1 i {image1 (1), image2 (2)}
```

Пример

Komaндa CLI: boot system inactive-image

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
```

```
1.3.6.1.4.1.89.2.13.1.1.3.1 i 1
```


После загрузки ПО с tftp-сервера данная команда применяется автоматически

Перезагрузка коммутатора

MIB: rlmng.mib

Используемые таблицы: rlRebootDelay — 1.3.6.1.4.1.89.1.10

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.1.10.0 t {задержка времени перед перезагрузкой}
```

Пример: перезагрузка, отложенная на 8 минут

```
Команда CLI:
reload in 8
Команда SNMP:
snmpset -v2c -c private -r 0 192.168.1.30 \
1.3.6.1.4.1.89.1.10.0 t 48000
```

Для указания моментальной перезагрузки требуется указать значение t=0

Просмотр образа ПО

MIB: RADLAN-DEVICEPARAMS-MIB.mib

Используемые таблицы: rndActiveSoftwareFile — 1.3.6.1.4.1.89.2.13.1.1.2

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.2.13.1.1.2
```

Пример

```
Команда CLI: show bootvar
```

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.2.13.1.1.2


```
1) Возможные варианты:
```

image1(1) image2(2)

2) Посмотреть активный образ ПО после перезагрузки можно в rndActiveSoftwareFileAfterReset — 1.3.6.1.4.1.89.2.13.1.1.3

Просмотр загруженных образов ПО

MIB: RADLAN-DEVICEPARAMS-MIB.mib

Используемые таблицы: rndImageInfoTable — 1.3.6.1.4.1.89.2.16.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.2.16.1
```

Пример

Команда CLI: show bootvar

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.2.16.1

Просмотр текущей версии ПО коммутатора

MIB: RADLAN-DEVICEPARAMS-MIB.mib

Используемые таблицы: rndBrgVersion — 1.3.6.1.4.1.89.2.4

```
snmpwalk -v2c -c <community> <IP address> \ \ 1.3.6.1.4.1.89.2.4
```

Пример

Команда CLI: show version

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.2.4

<u>Просмотр текущей НW версии</u>

MIB: RADLAN-DEVICEPARAMS-MIB.mib

Используемые таблицы: genGroupHWVersion — 1.3.6.1.4.1.89.2.11.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.2.11.1
```

Пример

Команда CLI: show system id

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.2.11.1

4 УПРАВЛЕНИЕ СИСТЕМОЙ

4.1 Системные ресурсы

Просмотр серийного номера коммутатора

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdUnitGenParamSerialNum — 1.3.6.1.4.1.89.53.14.1.5

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.53.14.1.5
```

Пример

Команда CLI: show system id

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.53.14.1.5

Просмотр информации о загрузке tcam

MIB:RADLAN-QOS-CLI-MIB

Используемые таблицы: rlQosClassifierUtilizationPercent — 1.3.6.1.4.1.89.88.36.1.1.2

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.36.1.1.2
```

Пример

Komaндa CLI: show system tcam utilization

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.88.36.1.1.2

Просмотр максимального количества хостов

MIB: rltuning.mib

Используемые таблицы: rsMaxIpSFftEntries — 1.3.6.1.4.1.89.29.8.9.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.29.8.9.1
```

Пример

Komaндa CLI: show system router resources

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.29.8.9.1

Просмотр используемого количества хостов

MIB: rlfft.mib

Используемые таблицы: rlSysmngTcamAllocInUseEntries — 1.3.6.1.4.1.89.204.1.1.1.5

snmpwalk -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.204.1.1.1.5.5.116.99.97.109.49.1

Пример

Komaндa CLI: show system router resources

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \

Просмотр максимального количества маршрутов

1.3.6.1.4.1.89.204.1.1.1.5.5.116.99.97.109.49.1

MIB: rltuning.mib

Используемые таблицы: rsMaxIpPrefixes — 1.3.6.1.4.1.89.29.8.21.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.29.8.21.1
```

Пример

Kоманда CLI: show system router resources

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.29.8.21.1
```

Просмотр используемого количества маршрутов

MIB: rlip.mib

Используемые таблицы: rllpTotalPrefixesNumber — 1.3.6.1.4.1.89.26.25

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.26.25
```

Пример

Komaндa CLI: show system router resources

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.26.25

Просмотр максимального количества IP-интерфейсов

MIB: rltuning.mib

Используемые таблицы: rsMaxIpInterfaces — 1.3.6.1.4.1.89.29.8.25.1

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.29.8.25.1

Пример

Команда CLI: show system router resources

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.29.8.25.1

Просмотр используемого количества ІР-интерфейсов

MIB: rlip.mib

Используемые таблицы: rllpAddressesNumber — 1.3.6.1.4.1.89.26.23

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.26.23
```

Пример

Komaндa CLI: show system router resources

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.26.23
```

Просмотр системного МАС-адреса коммутатора

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdStackMacAddr — 1.3.6.1.4.1.89.53.4.1.7

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.53.4.1.7
```

Пример

Команда CLI: show system

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.4.1.7
```

<u>Просмотр Uptime коммутатора</u>

MIB: SNMPv2-MIB

Используемые таблицы: sysUpTime — 1.3.6.1.2.1.1.3

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.1.3
```

Пример

```
Команда CLI: show system
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.1.3
```

Просмотр Uptime порта

MIB: SNMPv2-MIB, IF-MIB

```
Используемые таблицы:
sysUpTime — 1.3.6.1.2.1.1.3
ifLastChange — 1.3.6.1.2.1.2.2.1.9
```

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.1.3
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.9.{ifindex}
```

Пример: просмотра Uptime порта Gigabitethernet1/0/2

```
Команда CLI:
show interface status Gigabitethernet1/0/2
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.1.3
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.2.2.1.9.50
```


Примечание: из вывода первой команды необходимо отнять вывод второй команды. Полученное значение и будет являться uptime порта.

Включение сервиса мониторинга, приходящего на СРИ трафика

MIB: rlsct.mib

Используемые таблицы: rlSctCpuRateEnabled — 1.3.6.1.4.1.89.203.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.203.1.0 i {true(1), false(2)}
```

Пример

```
Команда CLI:
service cpu-input-rate
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 1.3.6.1.4.1.89.203.1.0 i 1
```

ACUTEX

<u>Просмотр счетчиков и количества обрабатываемых СРИ в секунду пакетов (по типам</u> <u>трафика)</u>

MIB: rlsct.mib

Используемые таблицы: eltCpuRateStatisticsTable — 1.3.6.1.4.1.35265.1.23.1.773.1.2.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.1.773.1.2.1.1.{rate in pps(2), packets count(3)}
```

Пример просмотра количества обрабатываемых СРИ в секунду пакетов

Команда CLI: show cpu input-rate detailed

```
Команда SNMP:
```

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.1.773.1.2.1.1.2
```


Привязка индексов к типам трафика:

stack(1) http(2) telnet(3) ssh(4) snmp(5) ip(6) arp(7) arpInspec(8) stp(9) ieee(10) routeUnknown(11) ipHopByHop(12) mtuExceeded(13) ipv4Multicast(14) ipv6Multicast(15) dhcpSnooping(16) igmpSnooping(17) mldSnooping(18) ttlExceeded(19) ipv4IllegalAddress(20) ipv4HeaderError(21) ipDaMismatch(22) sflow(23) logDenyAces(24) dhcpv6Snooping(25) vrrp(26) logPermitAces(27) ipv6HeaderError (28)

Изменение лимитов СРИ

MIB: eltSwitchRateLimiterMIB.mib

Используемые таблицы: eltCPURateLimiterTable — 1.3.6.1.4.1.35265.1.23.1.773.1.1.1

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.1.773.1.1.1.1.2.{index} i {limiter value}

Пример установки ограничения snmp трафика для CPU в 512 pps

Команда CLI: service cpu-rate-limits snmp 512

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.1.773.1.1.1.1.2.4 i 512

<u>Список индексов:</u>

eltCPURLTypeHttp(1) eltCPURLTypeTelnet(2) eltCPURLTypeSsh(3) eltCPURLTypeSnmp(4) eltCPURLTypelp(5) eltCPURLTypeLinkLocal(6) eltCPURLTypeArpRouter(7) eltCPURLTypeArpInspec(9) eltCPURLTypeStpBpdu(10) eltCPURLTypeOtherBpdu(11) eltCPURLTypelpRouting(12) eltCPURLTypelpOptions(13) eltCPURLTypeDhcpSnoop(14) eltCPURLTypeIgmpSnoop(16) eltCPURLTypeMldSnoop(17) eltCPURLTypeSflow(18) eltCPURLTypeLogDenyAces(19) eltCPURLTypelpErrors(20) eltCPURLTypeOther(22)

Мониторинг загрузки СРИ

MIB: rlmng.mib

Используемые таблицы:

rlCpuUtilDuringLastSecond — 1.3.6.1.4.1.89.1.7 rlCpuUtilDuringLastMinute — 1.3.6.1.4.1.89.1.8 rlCpuUtilDuringLast5Minutes — 1.3.6.1.4.1.89.1.9

- Загрузка за последних пять секунд: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.1.7
- Загрузка за 1 минуту: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.1.8
- Загрузка за 5 минут: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.1.9

Aeltex

Пример просмотра загрузки CPU за последних пять секунд

Команда CLI: show cpu utilization

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.1.7

Включение мониторинга загрузки СРИ по процессам

MIB: RADLAN-rndMng

Используемые таблицы: rlCpuTasksUtilEnable — 1.3.6.1.4.1.89.1.6

```
snmpset -v2c -c <community> <IP address>
1.3.6.1.4.1.89.1.6.0 i {true(1), false(2)}
```

Пример

Команда CLI: service tasks-utilization Команда SNMP: snmpset -v2c -c private 192.168.1.30 1.3.6.1.4.1.89.1.6.0 i 1

Мониторинг загрузки СРИ по процессам

MIB: ELTEX-MES-MNG-MIB

Используемые таблицы:

eltCpuTasksUtilStatisticsUtilizationDuringLast5Seconds - 1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.3, eltCpuTasksUtilStatisticsUtilizationDuringLastMinute - 1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.4, eltCpuTasksUtilStatisticsUtilizationDuringLast5Minutes - 1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.5

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.3.{5sec(3), 1min(4), 5min(5)}.{task index}
```

Пример просмотра загрузки по процессам за последние 5 секунд

```
Команда CLI:
show tasks utilization
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.3
```


Привязка индексов к процессам

LTMR(0)	NTST(50)	IPRD(100)
ROOT(1)	CNLD(51)	PNGA(101)
IT33(2)	HOST(52)	UDPR(102)
IV11(3)	TBI_(53)	VRRP(103)
URGN(4)	BRMN(54)	TRCE(104)
TMNG(5)	COPY(55)	SSLP(105)
IOTG(6)	TRNS(56)	WBSO(106)
IOUR(7)	MROR(57)	WBSR(107)
IOTM(8)	DFST(58)	GOAH(108)
SSHU(9)	SFTR(59)	ECHO(109)
XMOD(10)	SFMG(60)	TNSR(110)

ACUTEX

MSCm(11)	HCPT(61)	TNSL(111)
STSA(12)	EVAU(62)	SSHP(112)
STSB(13)	EVFB(63)	PTPT(113)
STSC(14)	EVRT(64)	NBBT(114)
STSD(15)	EPOE(65)	SQIN(115)
STSE(16)	DSPT(66)	MUXT(116)
CPUT(17)	B_RS(67)	DMNG(117)
EVAP(18)	TRIG(68)	DSYN(118)
HCLT(19)	MACT(69)	HSEU(119)
EVLC(20)	SW2M(70)	DTSA(120)
SELC(21)	3SWQ(71)	SS2M(121)
SEAU(22)	POLI(72)	DSND(122)
ESTC(23)	OBSR(73)	STMB(123)
SSTC(24)	NTPL(74)	AAAT(124)
BOXS(25)	L2HU(75)	AATT(125)
BSNC(26)	L2PS(76)	SCPT(126)
BOXM(27)	SFSM(77)	DH6C(127)
TRMT(28)	NSCT(78)	RCLA(128)
D_SP(29)	NSFP(79)	RCLB(129)
D_LM(30)	NVCT(80)	RCDS(130)
PLCT(31)	NACT(81)	GRN_(131)
PLCR(32)	NSTM(82)	IPMT(132)
exRX(33)	NINP(83)	SNTP(133)
3SWF(34)	L2UT(84)	DHCP(134)
MSRP(35)	BRGS(85)	DHCp(135)
HSES(36)	FHSS(86)	RELY(136)
HSCS(37)	FHSF(87)	MSSS(137)
MRDP(38)	FFTT(88)	WBAM(138)
MLDP(39)	IPAT(89)	WNTT(139)
SETX(40)	IP6M(90)	RADS(140)
EVTX(41)	IP6L(91)	SNAS(141)
SERX(42)	IP6C(92)	SNAE(142)
EVRX(43)	IP6R(93)	SNAD(143)
HLTX(44)	RPTS(94)	MNGT(144)
LBDR(45)	ARPG(95)	UTST(145)
DDFG(46)	IPG_(96)	SOCK(146)
SYLG(47)	DNSC(97)	TCPP(147)
CDB_(48)	ICMP(98)	UNQt(148)
SNMP(49)	TFTP(99)	. ,

Просмотр общего объема оперативной памяти

MIB: ELTEX-PROCESS-MIB.mib

Используемые таблицы: eltexProcessMemoryTotal — 1.3.6.1.4.1.35265.41.1.2.1.1.3

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.41.1.2.1.1.3.0

Пример

Команда CLI: show cpu utilization

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.41.1.2.1.1.3.0
```

Просмотр свободного объема оперативной памяти

MIB: ELTEX-PROCESS-MIB.mib

Используемые таблицы: eltexProcessMemoryFree — 1.3.6.1.4.1.35265.41.1.2.1.1.7

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.41.1.2.1.1.7.0
```

Пример

```
Команда CLI:
show cpu utilization
```

Команда SNMP:

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.41.1.2.1.1.7.0
```

Включение поддержки сверхдлинных кадров (jumbo-frames)

MIB: radlan-jumboframes-mib.mib

Используемые таблицы: rlJumboFrames — 1.3.6.1.4.1.89.91

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.91.2.0 i {enabled(1), disabled(2)}
```

Пример

Команда CLI: port jumbo-frame

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.91.2.0 i 1
```

4.2 Системные параметры

Контроль состояния блоков питания

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdUnitEnvParamTable — 1.3.6.1.4.1.89.53.15

- Основной блок питания: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.2
- Резервный блок питания: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.3

Пример просмотра состояния основного блока питания

Команда CLI: show system

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.15.1.2
```


1) для основного блока питания возможны следующие состояния:

normal (1) warning (2) critical (3) shutdown (4) notPresent (5) notFunctioning (6)

2) для резервного блока питания возможны следующие состояния:

normal (1) warning (2) critical (3) shutdown (4) notPresent (5) notFunctioning (6)

Мониторинг статуса АКБ

MIB: eltEnv.mib

Используемые таблицы: eltEnvMonBatteryState — 1.3.6.1.4.1.35265.1.23.11.1.1.2

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.11.1.1.2

Пример

Komaндa CLI: show system battery

Команда SNMP:

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.11.1.1.2
```


Возможные состояния:

normal (1) — батарея заряжена warning (2) — батарея разряжается critical (3) — низкий уровень заряда батареи notPresent (5) — батарея отсутствует notFunctioning (6) — авария расцепителя тока питания батареи restore(7) — батарея заряжается

Мониторинг уровня заряда АКБ

MIB: eltEnv.mib

Используемые таблицы: eltEnvMonBatteryStatusCharge — 1.3.6.1.4.1.35265.1.23.11.1.1.3

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.11.1.1.3
```

Aeltex

Пример

Команда CLI: show system battery

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.11.1.1.3

Контроль состояния вентиляторов

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdUnitEnvParamTable — 1.3.6.1.4.1.89.53.15

- Вентилятор 1: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.4
- Вентилятор 2: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.5
- Вентилятор 3: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.6
- Вентилятор 4: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.7

Пример просмотра состояния вентилятора 3 коммутатора MES3324F

Команда CLI: show system Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.53.15.1.6

Возможны следующие состояния:

normal (1) notFunctioning (5)

Контроль показаний температурных датчиков

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdUnitEnvParamTable — 1.3.6.1.4.1.89.53.1

• Температурный датчик 1: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.10

Пример просмотра температуры датчика

Команда CLI:	
show system	
Команда SNMP:	
snmpwalk -v2c -c public 192.168.1.30	\setminus
1.3.6.1.4.1.89.53.15.1.10	

<u>MES5324 имеет 4 температурных датчика, показания которых можно посмотреть командой CLI: show system sensors</u>

Команда SNMP: 1 датчик: snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.83.2.1.1.1.4.68420481 2 датчик: snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.83.2.1.1.1.4.68420482 3 датчик: snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.83.2.1.1.1.4.68420483 4 датчик: snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.83.2.1.1.1.4.68420484

Контроль состояния температурных датчиков

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdUnitEnvParamTable — 1.3.6.1.4.1.89.53.15

Температурный датчик 1: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.11

Пример

Komaндa CLI: show system sensors

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.15.1.11

<u>MES5324 имеет 4 температурных датчика, состояния которых можно</u> посмотреть командой CLI: show system sensors

```
Команда SNMP:

1 датчик:

snmpwalk -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.83.2.1.1.1.5.68420481

2 датчик:

snmpwalk -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.83.2.1.1.1.5.68420482

3 датчик:

snmpwalk -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.83.2.1.1.1.5.68420483

4 датчик:

snmpwalk -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.83.2.1.1.1.5.68420484
```


Состояния температурных датчиков ok (1) unavailable (2) nonoperational (3)

4.3 Параметры стэка

Мониторинг параметров стэка

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdStackTable — 1.3.6.1.4.1.89.53.4

```
snmpwalk -v2c -c <community> <IP address> \ \ 1.3.6.1.4.1.89.53.4
```

Пример просмотра параметров стэка

```
Команда CLI:
show stack
```

```
Команда SNMP:
```

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.4
```

Мониторинг стэковых портов

MIB: rlphysdescription.mib

Используемые таблицы: rlCascadeTable — 1.3.6.1.4.1.89.53.23

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.53.23
```

Пример просмотра состояния стэковых портов

```
Команда CLI:
show stack links
```

```
Команда SNMP:
```

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.23
```

4.4 Управление устройством

Задать/сменить hostname на устройстве

MIB: SNMPv2-MIB

Используемые таблицы: sysName — 1.3.6.1.2.1.1.5

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.1.5.0 s "{hostname}"
```

Пример присвоения hostname "mes2324"

```
Команда CLI:
hostname mes2324
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
```

1.3.6.1.2.1.1.5.0 s "mes2324"

Включение/отключение management acl

MIB: RADLAN-MNGINF-MIB

```
Используемые таблицы:
rlMngInfEnable — 1.3.6.1.4.1.89.89.2
rlMngInfActiveListName — 1.3.6.1.4.1.89.89.3
```

```
snmpset -v2c -c <community> <IP address>
1.3.6.1.4.1.89.89.2.0 i {true(1), false(2)}\
1.3.6.1.4.1.89.89.3.0 s {name}
```

Пример включения management acl с именем eltex

Команда CLI:

management access-class eltex

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.89.2.0 i 1 \
1.3.6.1.4.1.89.89.3.0 s eltex

<u>Использование утилиты pinq</u>

MIB: rlapplication.mib

Используемые таблицы: rsPingInetTable — 1.3.6.1.4.1.89.35.4.2

```
snmpset -v2c -c <community> <IP address>\
```

```
1.3.6.1.4.1.89.35.4.1.1.2.{IP address>} i {Packet count}\
1.3.6.1.4.1.89.35.4.1.1.3.{IP address>} i {Packet Size}\
1.3.6.1.4.1.89.35.4.1.1.4.{IP address>} i {Packet Timeout}\
1.3.6.1.4.1.89.35.4.1.1.5.{IP address>} i {Ping Delay}\
1.3.6.1.4.1.89.35.4.1.1.6.{IP address>} i {Send SNMP Trap(2)}\
1.3.6.1.4.1.89.35.4.1.1.14.{IP address>} i {createAndGo(4), destroy(6),
active(1)}
```

Пример команды ping узла 192.168.1.1

```
Команда CLI:
ping 192.168.1.1 count 10 size 250 timeout 1000
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.35.4.1.1.2.192.168.1.1 i 10 \
1.3.6.1.4.1.89.35.4.1.1.3.192.168.1.1 i 250 \
1.3.6.1.4.1.89.35.4.1.1.4.192.168.1.1 i 1000 \
1.3.6.1.4.1.89.35.4.1.1.5.192.168.1.1 i 0 \
1.3.6.1.4.1.89.35.4.1.1.6.192.168.1.1 i 2 \
1.3.6.1.4.1.89.35.4.1.1.14.192.168.1.1 i 4
```

При установке в поле rsPingEntryStatus значения 4 (createAndGo) создаётся и активируется операция ping.

Чтобы повторно пропинговать удалённый хост, требуется в поле rsPingEntryStatus выставить значение 1(active).

После окончания операции обязательно надо удалить все записи, выставив в поле rsPingEntryStatus значение 6 (destroy). Иначе через CLI и SNMP операцию ping до другого хоста выполнить не удастся.

```
Пример удаления:
snmpset -v2c -c private 192.168.1.30\
1.3.6.1.4.1.89.35.4.1.12.192.168.1.1 i 10\
1.3.6.1.4.1.89.35.4.1.1.3.192.168.1.1 i 250\
1.3.6.1.4.1.89.35.4.1.1.4.192.168.1.1 i 1000\
1.3.6.1.4.1.89.35.4.1.1.5.192.168.1.1 i 0\
1.3.6.1.4.1.89.35.4.1.1.6.192.168.1.1 i 2\
```

1.3.6.1.4.1.89.35.4.1.1.14.192.168.1.1 i 6

<u>Мониторинг утилиты ping</u>

MIB: rlapplication.mib

Используемые таблицы: rsPingEntry — 1.3.6.1.4.1.89.35.4.1.1

snmpwalk -v2c -c <community> <IP address>\

1.3.6.1.4.1.89.35.4.1.1.{Количество отправленых пакетов(7), Количество принятых пакетов(8), Минимальное время ответа(9), Средние время ответа(10), Максимальное время ответа(11)}

Пример просмотра количества принятых пакетов

```
Команда CLI:
ping 192.168.1.31
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.35.4.1.1.8
```


При установке в поле rsPingEntryStatus значения 6 (destroy) мониторинг будет запрещён до создания новой операции.

Настройка системного журнала

MIB: DRAFT-IETF-SYSLOG-DEVICE-MIB

```
Используемые таблицы: snmpSyslogCollectorEntry — 1.3.6.1.4.1.89.82.1.2.4.1
```

```
snmpset -v2c -c <community> -t 10 -r 5 <IP address> \
1.3.6.1.4.1.89.82.1.2.4.1.2.1 s "{name}" \
1.3.6.1.4.1.89.82.1.2.4.1.3.1 i {ipv4(1), ipv6(2)} \
1.3.6.1.4.1.89.82.1.2.4.1.4.1 x {ip add in HEX} \
1.3.6.1.4.1.89.82.1.2.4.1.5.1 u {udp port number} \
1.3.6.1.4.1.89.82.1.2.4.1.6.1 i {syslog facility(16-24)} \
1.3.6.1.4.1.89.82.1.2.4.1.7.1 i {severity level} \
1.3.6.1.4.1.89.82.1.2.4.1.9.1 i {createAndGo(4), destroy(6)}
```

Пример добавления сервера для логирования

```
Команда CLI:
logging host 192.168.1.1 description 11111
Команда SNMP:
snmpset -v2c -c private -t 10 -r 5 192.168.1.30 \
1.3.6.1.4.1.89.82.1.2.4.1.2.1 s "11111" \
1.3.6.1.4.1.89.82.1.2.4.1.3.1 i 1 \
1.3.6.1.4.1.89.82.1.2.4.1.4.1 x COA80101 \
1.3.6.1.4.1.89.82.1.2.4.1.5.1 u 514 \
1.3.6.1.4.1.89.82.1.2.4.1.6.1 i 23 \
1.3.6.1.4.1.89.82.1.2.4.1.7.1 i 6 \
1.3.6.1.4.1.89.82.1.2.4.1.9.1 i 4
```


Severity level задается следующим образом:

emergency(0), alert(1), critical(2), error(3), warning(4), notice(5), info(6), debug(7) <u>Facility:</u> local0(16), local1(17), local2(18), local3(19),

local4(20), local5(21), local6(22), local7(23), no-map(24)

Мониторинг и управление Ethernet-коммутаторами MES по SNMP

5 НАСТРОЙКА СИСТЕМНОГО ВРЕМЕНИ

Настройка адреса SNTP-сервера

MIB: rlsntp.mib

Используемые таблицы: rlSntpConfigServerInetTable — 1.3.6.1.4.1.89.92.2.2.17

```
snmpset -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.92.2.2.17.1.3.1.4.{ip address in DEC. Байты IP-адреса

разделяются точками} i {true(1), false(2). Указание значения poll} \

1.3.6.1.4.1.89.92.2.2.17.1.9.1.4.{ip address in DEC. Байты IP-адреса

разделяются точками} u 0 \

1.3.6.1.4.1.89.92.2.2.17.1.10.1.4.{ip address in DEC. Байты IP-адреса

разделяются точками} i {createAndGo(4), destroy(6)}
```

Пример указания SNTP-сервера с IP-адресом 91.226.136.136

```
Команда CLI:
sntp server 91.226.136.136 poll
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.92.2.2.17.1.3.1.4.91.226.136.136 i 1 \
```

1.3.6.1.4.1.89.92.2.2.17.1.9.1.4.91.226.136.136 u 0 \ 1.3.6.1.4.1.89.92.2.2.17.1.10.1.4.91.226.136.136 i 4

Установка времени опроса для SNTP-клиента

MIB: rlsntp.mib

Используемые таблицы: rlSntpNtpConfig — 1.3.6.1.4.1.89.92.2.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.92.2.1.4.0 i {range 60-86400}
```

Пример установки времени опроса в 60 секунд

Komaндa CLI: sntp client poll timer 60

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.92.2.1.4.0 i 60
```


Чтобы вернуться к настройкам по умолчанию достаточно установить время в 1024 сек.

Настройка работы одноадресных SNTP-клиентов

MIB: rlsntp.mib

Используемые таблицы: rlSntpConfig — 1.3.6.1.4.1.89.92.2.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.92.2.2.5.0 i {true(1), false(2)}
```

Пример разрешения последовательного опроса SNTP-серверов

Команда CLI: sntp unicast client poll

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.92.2.2.5.0 i 1

Добавление часового пояса

MIB: rlsntp.mib

Используемые таблицы: rlTimeSyncMethodMode — 1.3.6.1.4.1.89.92.1

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.92.1.6.0 s "{TimeZone}" \
1.3.6.1.4.1.89.92.1.7.0 s "{NameZone}"

Пример добавления часового пояса на устройстве

Команда CLI: clock timezone test +7

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.92.1.6.0 s "+7:00" \
1.3.6.1.4.1.89.92.1.7.0 s "test"

6 КОНФИГУРИРОВАНИЕ ИНТЕРФЕЙСОВ

6.1 Параметры Ethernet-интерфейсов

Просмотр Description порта

MIB: IF-MIB или eltMng.mib

Используемые таблицы: if Alias — 1.3.6.1.2.1.31.1.1.18 или iflongDescr — 1.3.6.1.4.1.35265.1.23.1.1.31.1.1.1

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.31.1.1.1.18.{ifIndex}

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.1.1.31.1.1.1.1.{ifIndex}

Пример просмотра Description на интерфейсе GigabitEthernet1/0/1

Команда CLI: show interfaces description GigabitEthernet 1/0/1

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.31.1.1.18.49

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.1.1.31.1.1.1.49

Просмотр Description vlan

MIB: Q-BRIDGE-MIB

Используемые таблицы: dot1qVlanStaticTable — 1.3.6.1.2.1.17.7.1.4.3

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.17.7.1.4.3.1.1.{vlan id}
```

Пример просмотра Description vlan 100

```
Команда CLI: show interfaces description vlan 100
```

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.17.7.1.4.3.1.1.100

Просмотр скорости на интерфейсе

MIB: IF-MIB

Используемые таблицы: ifHighSpeed — 1.3.6.1.2.1.31.1.1.1.15

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.31.1.1.1.15.{ififndex}
```

Пример выключения negotiation на GigabitEthernet1/0/2

Komaндa CLI: show interface status GigabitEthernet1/0/2 Komaндa SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.31.1.1.1.5.50

Включение/выключение автосогласования скорости на интерфейсе

MIB: rlinterfaces.mib

Используемые таблицы: swlfSpeedDuplexAutoNegotiation — 1.3.6.1.4.1.89.43.1.1.16

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.16.{ifIndex} i {negotiation(1), no negotiation(2)}
```

Пример выключения negotiation на GigabitEthernet1/0/2

Komaндa CLI: interface GigabitEthernet1/0/2 no negotiation

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.43.1.1.16.50 i 2

<u>Включение пропуска процедуры автосогласования, если партнер на встречной стороне не отвечает.</u>

MIB: eltinterfaces.mib

Используемые таблицы: eltSwifAutoNegotiationBypass — 1.3.6.1.4.1.35265.1.23.43.1.1.3

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.43.1.1.3.{ifIndex} i {negotiationbypass(1), no
negotiation bypass(2)}
```

Пример выключения negotiation на TenGigabitEthernet1/0/2

```
Komaндa CLI:
interface TenGigabitEthernet1/0/2
no negotiation bypass
```

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.43.1.1.3.106 i 2

Установка режимов автосогласования скорости на интерфейсе

MIB: rlinterfaces.mib

Используемые таблицы: swlfAdminSpeedDuplexAutoNegotiationLocalCapabilities — 1.3.6.1.4.1.89.43.1.1.40

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.40.{ifIndex} x {negotiation mode(HEX)}
```

AELTEX

Пример настройки автосогласования на скорости 10f и 100f на интерфейсе GigabitEthernet1/0/2

```
Komaндa CLI:
interface GigabitEthernet1/0/2
negotiation 10f 100f
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.40.50 x 14
```


1) В двоичной системе 10f и 100f записывается как 00010100. В НЕХ системе счисления это 14

2) <u>Описание битов</u>

default(0), unknown(1), tenHalf(2), tenFull(3), fastHalf(4), fastFull(5), gigaHalf(6), gigaFull(7).

Порядок битов

01234567

Просмотр duplex режима порта

MIB: EtherLike-MIB

Используемые таблицы: dot3StatsDuplexStatus — 1.3.6.1.2.1.10.7.2.1.19

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.10.7.2.1.19.{ifindex}
```

Пример просмотра режима duplex порта GigabitEthernet 1/0/1

```
Komaндa CLI:
show interfaces status GigabitEthernet 1/0/1
Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.10.7.2.1.19.49
```


<u>Расшифровка выдаваемых значений</u>

unknown (1) halfDuplex (2) fullDuplex (3)
<u>Смена duplex режима на интерфейсе</u>

MIB: RADLAN-rlInterfaces

Используемые таблицы: swlfDuplexAdminMode — 1.3.6.1.4.1.89.43.1.1.3

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.3.{ifIndex} i {none(1),half(2),full (3)}

Пример смены режима duplex порта GigabitEthernet1/0/1

```
Команда CLI:
interface GigabitEthernet1/0/1
duplex half
```

```
Команда SNMP:
snmpset-v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.3.49 i 2
```

Просмотр среды передачи интерфейса

MIB: EtherLike-MIB

Используемые таблицы: swlfTransceiverType — 1.3.6.1.4.1.89.43.1.1.7

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.7.{ifindex}
```

Пример просмотра среды передачи порта GigabitEthernet 1/0/1

```
Команда CLI: show interfaces status GigabitEthernet 1/0/1
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.7.49
```

Расшифровка выдаваемых значений

Copper (1) FiberOptics (2) ComboCopper (3) ComboFiberOptics (4)

Управление потоком (flowcontrol)

MIB: RADLAN-rlInterfaces

Используемые таблицы: swlfFlowControlMode — 1.3.6.1.4.1.89.43.1.1.14

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.14.{ifindex} i {on(1),off(2),auto (3)}
```

A ELTEX

Пример включения управления потоком на интерфейсе GigabitEthernet1/0/2

```
Komaндa CLI:
interface GigabitEthernet1/0/2
flowcontrol on
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.14.50 i 1
```

Просмотр административного состояния порта

MIB: IF-MIB

Используемые таблицы: ifAdminStatus — 1.3.6.1.2.1.2.2.1.7

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.7.{ifIndex}
```

Пример просмотра статуса порта GigabitEthernet1/0/1

```
Komaндa CLI: show interfaces status GigabitEthernet 1/0/1
```

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.2.2.1.7.49

Возможные варианты

up(1) down(2) testing(3)

Включить/выключить конфигурируемый интерфейс

MIB: IF-MIB

Используемые таблицы: ifAdminStatus — 1.3.6.1.2.1.2.2.1.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.7.{ifIndex} i {up(1),down(2)}
```

Пример

```
Команда CLI:
interface GigabitEthernet 1/0/1
shutdown
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.2.2.1.7.49 i 2

Просмотр оперативного состояния порта

MIB: IF-MIB

Используемые таблицы: ifOperStatus — 1.3.6.1.2.1.2.2.1.8

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.8.{ifIndex}
```

Пример просмотра статуса порта GigabitEthernet1/0/1

```
Komaндa CLI:
show interfaces status GigabitEthernet 1/0/1
Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
```

1.3.6.1.2.1.2.2.1.8.49

V

Возможные варианты

up(1) down(2)

Определение типа подключения порта

MIB: rlinterfaces.mib

Используемые таблицы: swlfTransceiverType — 1.3.6.1.4.1.89.43.1.1.7

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.7.{ifIndex}

Пример определения типа порта GigabitEthernet1/0/1

```
Команда CLI:
show interfaces status
Команда SNMP:
```

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.7.49
```


Возможные варианты

regular (1) fiberOptics (2) comboRegular (3) comboFiberOptics (4)

Просмотр счетчика unicast-пакетов на интерфейсе

MIB: IF-MIB

Используемые таблицы: ifInUcastPkts — 1.3.6.1.2.1.2.2.1.11

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.11.{ifIndex}
```

Aeltex

Пример просмотра счетчика входящих unicast-пакетов на интерфейсе GigabitEthernet1/0/2

Команда CLI: show interface counters GigabitEthernet1/0/2 Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \

1.3.6.1.2.1.2.2.1.11.50

Просмотр счетчика multicast-пакетов на интерфейсе

MIB: IF-MIB

Используемые таблицы: ifInMulticastPkts — 1.3.6.1.2.1.31.1.1.1.2

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.31.1.1.2.{ifindex}
```

Пример просмотра счетчика входящих multicast-пакетов на интерфейсе GigabitEthernet1/0/2

Команда CLI: show interface counters GigabitEthernet1/0/2

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.31.1.1.2.50

Просмотр счетчика broadcast-пакетов на интерфейсе

MIB: IF-MIB

Используемые таблицы: ifInBroadcastPkts — 1.3.6.1.2.1.31.1.1.1.3

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.31.1.1.1.3.{ifindex}

Пример просмотра счетчика входящих broadcast-пакетов на интерфейсе GigabitEthernet1/0/2

Komaндa CLI: show interface counters GigabitEthernet1/0/2 Komaндa SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.31.1.1.3.50

Просмотр счетчика октетов на интерфейсе

MIB: IF-MIB

Используемые таблицы:

ifInOctets — 1.3.6.1.2.1.2.2.1.10 ifHCInOctets - 1.3.6.1.2.1.31.1.1.1.6 ifOutOctets — 1.3.6.1.2.1.2.2.1.16 ifHCOutOctets - 1.3.6.1.2.1.31.1.1.1.10

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.10.{ifindex}

Пример просмотра счетчика принятых октетов на интерфейсе GigabitEthernet1/0/2

Команда CLI:

show interface counters gigabitethernet1/0/2

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.2.2.1.10.50

Под октетом имеется в виду количество байт.

1 октет = 1 байт

Просмотр счетчика FCS Errors на интерфейсе

MIB: EtherLike-MIB

Используемые таблицы: dot3StatsFCSErrors — 1.3.6.1.2.1.10.7.2.1.3

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.10.7.2.1.3.{ifindex}
```

Пример просмотра счетчика FCS Errors на интерфейсе GigabitEthernet1/0/2

Komaндa CLI: show interface counters GigabitEthernet1/0/2

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.10.7.2.1.3.50

Просмотр счетчика Internal MAC Rx Errors на интерфейсе

MIB: EtherLike-MIB

Используемые таблицы: dot3StatsInternalMacReceiveErrors — 1.3.6.1.2.1.10.7.2.1.16

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.10.7.2.1.16.{ifindex}
```

Пример просмотра счетчика Internal MAC Rx Errors на интерфейсе GigabitEthernet1/0/2

Kоманда CLI: show interface counters GigabitEthernet1/0/2

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.10.7.2.1.16.50

Просмотр счетчика Transmitted Pause Frames на интерфейсе

MIB: EtherLike-MIB

Используемые таблицы: dot3OutPauseFrames — 1.3.6.1.2.1.10.7.10.1.4

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.10.7.10.1.4.{ifindex}
```

ACUTEX

Пример просмотра счетчика Transmitted Pause Frames на интерфейсе GigabitEthernet1/0/2

Команда CLI: show interface counters GigabitEthernet1/0/2 Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.10.7.10.1.4.50

Просмотр счетчика Received Pause Frames на интерфейсе

MIB: EtherLike-MIB

Используемые таблицы: dot3InPauseFrames — 1.3.6.1.2.1.10.7.10.1.3

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.10.7.10.1.3.{ifindex}
```

Пример просмотра счетчика Received Pause Frames на интерфейсе GigabitEthernet1/0/2

Команда CLI: show interface counters GigabitEthernet1/0/2

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \setminus 1.3.6.1.2.1.10.7.10.1.3.50

Очистка счетчиков интерфейсов

MIB: rlInterfaces.mib

Используемые таблицы: rllfClearPortMibCounters — 1.3.6.1.4.1.89.54.4

```
snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.54.4.0 х {битовая маска}
```

Пример очистки счетчика интерфейсов для коммутатора MES2324B

Команда CLI: clear counters

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.54.4.0 x
000000000001fffe000000000
```

Пример очистки счетчика интерфейсов для коммутатора MES5324

```
Команда CLI:
clear counters
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.54.4.0 x
000000000001FFFE000000000
```


1) В значение очистки счетчиков в стеке задается битовая маска для всех портов

всех юнитов стека:

Мониторинг загрузки портов коммутатора

1.3.6.1.4.1.89.54.9.0

MIB: eltMes.mib

Используемые таблицы: eltSwlfUtilizationEntry — 1.3.6.1.4.1.35265.1.23.43.2.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.43.2.1.{parametr}
```

Пример

Komaндa CLI: show interfaces utilization

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.43.2.1.1

Список возможных параметров

eltSwlfUtilizationIfIndex(1) eltSwlfUtilizationAverageTime(2) eltSwlfUtilizationCurrentInPkts(3) eltSwlfUtilizationCurrentInRate(4) eltSwlfUtilizationCurrentOutPkts(5) eltSwlfUtilizationAverageInPkts(7) eltSwlfUtilizationAverageInRate(8) eltSwlfUtilizationAverageOutPkts(9) eltSwlfUtilizationAverageOutPkts(10)

6.2 Конфигурирование VLAN

<u>Добавление vlan в vlan database</u>

MIB: rlvlan.mib

Используемые таблицы:

rldot1qVlanStaticList1to1024 — 1.3.6.1.4.1.89.48.69.1.2 rldot1qVlanStaticList1025to2048 — 1.3.6.1.4.1.89.48.69.1.3 rldot1qVlanStaticList2049to3072 — 1.3.6.1.4.1.89.48.69.1.4 rldot1qVlanStaticList3073to4094 — 1.3.6.1.4.1.89.48.69.1.5

snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.48.69.1.2 x {битовая маска}

Пример создания 994 vlan'a в vlan database

```
Команда CLI:
vlan database
Vlan 994
```

Команда SNMP:

1) При расчете битовой маски для vlan 1025-2048, выполнить вычитание 1024 от необходимого vlan, а затем уже выполнять расчет маски. Аналогично для vlan 2049-3072: необходимо отнять 2048 перед расчетом. Для 3073-4094 — вычесть 3072. Битовая маска должна включать в себя не менее 10 символов.

 Пример расчета битовой маски приведен в разделе «Приложение А. Методика расчета битовой маски».

<u>Добавление vlan на порт</u>

MIB: rlvlan.mib

Используемые таблицы: rldot1qPortVlanStaticTable — 1.3.6.1.4.1.89.48.68

snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.48.68.1.{1-8}.{ifIndex} х {vlan в виде битовой маски}

Пример добавления vlan 622 и 3100 на интерфейс GigabitEthernet 1/0/2 в режим trunk

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.68.1.4.50 x 0000001000

Пример добавления vlan 622 на интерфейс GigabitEthernet 1/0/2 в качестве native vlan

Команда CLI:

interface GigabitEthernet 1/0/2
switchport mode trunk
switchport trunk native vlan 622

Команда SNMP:

Пример добавления vlan 622 на интерфейс GigabitEthernet 1/0/2 в режиме access

Komaндa CLI: interface GigabitEthernet 1/0/2 switchport access vlan 622

Команда SNMP:

1. Перечень таблиц

rldot1qPortVlanStaticEgressList1to1024 — 1.3.6.1.4.1.89.48.68.1.1.{ifindex} rldot1qPortVlanStaticEgressList1025to2048 — 1.3.6.1.4.1.89.48.68.1.2.{ifindex} rldot1qPortVlanStaticEgressList2049to3072 — 1.3.6.1.4.1.89.48.68.1.3.{ifindex} rldot1qPortVlanStaticEgressList3073to4094 — 1.3.6.1.4.1.89.48.68.1.4.{ifindex} rldot1qPortVlanStaticUntaggedEgressList1to1024 — 1.3.6.1.4.1.89.48.68.1.5.{ifindex} rldot1qPortVlanStaticUntaggedEgressList1025to2048 — 1.3.6.1.4.1.89.48.68.1.6.{ifindex} rldot1qPortVlanStaticUntaggedEgressList2049to3072 — 1.3.6.1.4.1.89.48.68.1.7.{ifindex} rldot1qPortVlanStaticUntaggedEgressList2049to3072 — 1.3.6.1.4.1.89.48.68.1.7.{ifindex} rldot1qPortVlanStaticUntaggedEgressList3073to4094 — 1.3.6.1.4.1.89.48.68.1.8.{ifindex}

2. Пример составления битовой маски приведен в разделе «Приложение А. Методика расчета битовой маски».

3. Битовая маска должна включать в себя не менее 10 символов.

Запретить default VLAN на порте

MIB: eltVlan.mib

Используемые таблицы: eltVlanDefaultForbiddenPorts — 1.3.6.1.4.1.35265.1.23.5.5.1

snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.5.5.1.0 x {порт в виде битовой маски}

Пример запрета default vlan на порте GigabitEthernet 1/0/5

```
Komaндa CLI:
interface GigabitEthernet1/0/5
switchport forbidden default-vlan
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.5.5.1.0 x 000000000000

1. Пример составления битовой маски приведен в разделе «Приложение А. Методика расчета битовой маски».

2. Битовая маска должна включать в себя не менее 10 символов.

Просмотр имени VLAN

MIB: rlvlan.mib

Используемые таблицы: rldot1qVlanStaticName — 1.3.6.1.4.1.89.48.70.1.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.70.1.1.{vlan}
```

Пример просмотра имени vlan 5

Komaндa CLI: show vlan tag 5

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.48.70.1.1.5

Просмотр членства порта во VLAN

MIB: rlvlan.mib

Используемые таблицы: rldot1qPortVlanStaticTable — 1.3.6.1.4.1.89.48.68

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.68.1.{1-4}.{ifindex}
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.68.1.{5-8}.{ifindex}
```

Пример просмотра vlan на GigabitEthernet1/0/5

```
Команда CLI:
show interfaces switchport GigabitEthernet1/0/5
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.48.68.1.1.54
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.48.68.1.5.54
```


1. В примере представленны 2 команды snmpwalk. Если порт Tagged — значения в выводе второй команды принимают нулевое значение и номер Vlan соответствует значениям вывода первой команды. Если порт Untagged — в выводе второй команды присутствуют значения, отличные от нуля, и номер Vlan соответствует этим значениям.

2. Перечень таблиц

rldot1qPortVlanStaticEgressList1to1024 — 1.3.6.1.4.1.89.48.68.1.1.{ifindex} rldot1qPortVlanStaticEgressList1025to2048 — 1.3.6.1.4.1.89.48.68.1.2.{ifindex} rldot1qPortVlanStaticEgressList2049to3072 — 1.3.6.1.4.1.89.48.68.1.3.{ifindex} rldot1qPortVlanStaticEgressList3073to4094 — 1.3.6.1.4.1.89.48.68.1.4.{ifindex} rldot1qPortVlanStaticUntaggedEgressList1to1024 — 1.3.6.1.4.1.89.48.68.1.5.{ifindex} rldot1qPortVlanStaticUntaggedEgressList1025to2048 — 1.3.6.1.4.1.89.48.68.1.6.{ifindex} rldot1qPortVlanStaticUntaggedEgressList2049to3072 — 1.3.6.1.4.1.89.48.68.1.7.{ifindex} rldot1qPortVlanStaticUntaggedEgressList3073to4094 — 1.3.6.1.4.1.89.48.68.1.7.{ifindex} rldot1qPortVlanStaticUntaggedEgressList3073to4094 — 1.3.6.1.4.1.89.48.68.1.8.{ifindex}

3. Полученные в результате выполнения запроса значения представляют из себя битовую маску, методика расчета которой приведена в разделе «Приложение А. Методика расчета битовой маски».

Настройка режима работы порта

MIB: rlvlan.mib

Используемые таблицы: vlanPortModeEntry — 1.3.6.1.4.1.89.48.22.1

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.48.22.1.1.{ifIndex} i {general(1), access(2), trunk(3),
    customer(7)}
```

Пример настройки интерфейса GigabitEthernet 1/0/2 в режим trunk

Команда CLI: interface GigabitEthernet 1/0/2 switchport mode trunk Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.22.1.1.50 i 3
```

Просмотр режима порта

MIB: rlvlan.mib

Используемые таблицы: vlanPortModeState — 1.3.6.1.4.1.89.48.22.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.22.1.1.{ifindex}
```

Пример просмотра режима на GigabitEthernet1/0/2

Команда CLI:

show interfaces switchport GigabitEthernet1/0/2

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.48.22.1.1.50

<u>Возможные варианты</u>

general(1) access(2) trunk (3) customer (7)

Назначить pvid на интерфейс

MIB: Q-BRIDGE-MIB.mib

Используемые таблицы: dot1qPortVlanTable — 1.3.6.1.2.1.17.7.1.4.5

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.17.7.1.4.5.1.1.{ifindex} u {1-4094}
```

Пример назначения pvid 15 для GigabitEthernet 1/0/2

```
Komaндa CLI:
interface GigabitEthernet 1/0/2
switchport general pvid 15
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.17.7.1.4.5.1.1.50 u 15
```

Настройка тар тас

MIB: rlvlan.mib

Используемые таблицы: vlanMacBaseVlanGroupTable — 1.3.6.1.4.1.89.48.45

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.45.1.3.{MAC address in DEC}.{mask} i {map-group number} \
1.3.6.1.4.1.89.48.45.1.4.{MAC address in DEC}.{mask} i {createAndGo(4),
destroy(6)}
```

Пример

Команда CLI: vlan database map mac a8:f9:4b:33:29:c0 32 macs-group 1

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.45.1.3.168.249.75.51.41.192.32 i 1 \
1.3.6.1.4.1.89.48.45.1.4.168.249.75.51.41.192.32 i 4
```

<u>Установка правила классификации VLAN, основанного на привязке к MAC-адресу, для</u> интерфейса

MIB: rlvlan.mib

Используемые таблицы: vlanMacBaseVlanPortTable — 1.3.6.1.4.1.89.48.46.1.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.46.1.2.58.1 u {vlan} 1.3.6.1.4.1.89.48.46.1.3.58.1 i
{createAndGo(4), destroy(6)}
```

Пример включения правила классификации VLAN для интерфейса gigabitethernet 1/0/10

Команда CLI: interface Gigabitethernet 1/0/10 switchport general map macs-group 1 vlan 20

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.46.1.2.58.1 u 20 \
1.3.6.1.4.1.89.48.46.1.3.58.1 i 4
```

6.3 Настройка и мониторинг errdisable-состояния

Просмотр настроек для автоматической активации интерфейса

MIB: rlinterfaces_recovery.mib

Используемые таблицы: rlErrdisableRecoveryEnable — 1.3.6.1.4.1.89.128.2.1.2

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.128.2.1.2
```

Пример: просмотр настроек для автоматической активации интерфейса

```
Команда CLI:
show errdisable recovery
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.128.2.1.2
```

Просмотр причины блокировки порта

MIB: rlErrdisableRecoveryIfReason

Используемые таблицы: rlErrdisableRecoveryIfReason — 1.3.6.1.4.1.89.128.3.1.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.128.3.1.1
```

Пример

```
Команда CLI: show errdisable interfaces
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.128.3.1.1
```


Возможные варианты:

loopback-detection (1) port-security (2) dot1x-src-address (3) acl-deny (4) stp-bpdu-guard (5) stp-loopback-guard (6) unidirectional-link (7) dhcp-rate-limit (8) l2pt-guard (9) storm-control (10)

Настройка автоматической активации интерфейса

MIB: rlinterfaces_recovery.mib

Используемые таблицы: rlErrdisableRecoveryEnable — 1.3.6.1.4.1.89.128.2.1.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.128.2.1.2. {index of reason} i {true(1), false(2)}
```

Пример включения автоматической активации интерфейса в случае loopback detection

```
Команда CLI:
errdisable recovery cause loopback-detection
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
```

1.3.6.1.4.1.89.128.2.1.2.1 i 1

Возможные значения index of reason, в зависимости от типа выполняемой настройки:

```
loopback detection — (1)
port-security — (2)
dot1x-src-address — (3)
acl-deny — (4)
stp-bpdu-guard — (5)
stp-loopback-guard (6)
unidirectional-link — (8)
storm-control — (9)
l2pt-guard — (11)
```

Настройка интервала выхода интерфейса из errdisable состояния

MIB: rlinterfaces_recovery.mib

Используемые таблицы: rlErrdisableRecoveryInterval — 1.3.6.1.4.1.89.128.1

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.128.1.0 i {interval 30-86400}

Пример настройки 30-ти секундного интервала выхода из errdisable состояния

```
Команда CLI:
errdisable recovery interval 30
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.128.1.0 i 30
```

6.4 Настройка voice vlan

<u>Добавление voice vlan</u>

MIB: RADLAN-vlanVoice-MIB

Используемые таблицы: vlanVoiceAdminVid — 1.3.6.1.4.1.89.48.54.8

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.54.8.0 i {vlan id}
```

Пример добавления voice vlan id 10

```
Команда CLI:
voice vlan id 10
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.54.8.0 i 10
```

Активация voice vlan на интерфейсе

MIB: RADLAN-vlanVoice-MIB

Используемые таблицы: vlanVoiceOUIBasedPortTable — 1.3.6.1.4.1.89.48.54.12.5

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.54.12.5.1.1.{ifIndex} i 1 \
1.3.6.1.4.1.89.48.54.12.5.1.2.{ifIndex} u {voice vlan id}
```

Пример

```
Komaндa CLI:
interface GigabitEthernet1/0/3
voice vlan enable
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.54.12.5.1.1.51 i 1 \
1.3.6.1.4.1.89.48.54.12.5.1.2.51 u 10

<u>Редактирование таблицы ОUI</u>

MIB: rlvlanVoice.mib

Используемые таблицы: vlanVoiceOUIBasedTable — 1.3.6.1.4.1.89.48.54.12.4

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.54.12.4.1.3.{OUI in DEC. Байты разделяются точками} i
{createAndGo(4), destroy(6)}
```

Пример

```
Команда CLI:
voice vlan oui-table add 002618
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.54.12.4.1.3.0.38.24 i 4
```

6.5 Настройка LLDP

Глобальное включение/отключение IIdp

MIB: rlLldp.mib

Используемые таблицы: rlLldpEnabled — 1.3.6.1.4.1.89.110.1.1.1

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.110.1.1.1.0 i {true (1), false (2)}
```

Пример отключения LLDP

```
Команда CLI:
no Lldp run
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.110.1.1.1.0 i 2
```

Настройка lldp-med политики с указанием номера voice vlan для тегированного трафика voice vlan

MIB: rllldb.mib

```
Используемые таблицы: rlLldpXMedLocMediaPolicyContainerTable — 1.3.6.1.4.1.89.110.1.2.1
```

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.110.1.2.1.1.2.1 i {voice(1), voice-signaling(2), guest-voice(3),
guest-voice-signaling(4), softphone-voice(5), video-conferencing(6), streaming-
video(7), video-signaling(8) } \
1.3.6.1.4.1.89.110.1.2.1.1.3.1 i {vlan} \
1.3.6.1.4.1.89.110.1.2.1.1.4.1 i {priority} \
1.3.6.1.4.1.89.110.1.2.1.1.7.1 {true(1), false(2)} \
1.3.6.1.4.1.89.110.1.2.1.1.9.1 i {createAndGo(4), destroy(6)}
```

Пример настройки lldp-med политики с указанием VLAN 10, указанием приоритета 4

```
Команда CLI:

lldp med network-policy 1 voice vlan 10 vlan-type tagged up 4

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.110.1.2.1.1.2.1 i 1 \

1.3.6.1.4.1.89.110.1.2.1.1.3.1 i 10 \

1.3.6.1.4.1.89.110.1.2.1.1.4.1 i 4 \

1.3.6.1.4.1.89.110.1.2.1.1.7.1 i 1 \

1.3.6.1.4.1.89.110.1.2.1.1.9.1 i 4
```

Настройка Ildp-med политики для тегированного трафика voice vlan

MIB: rllldb.mib

```
Используемые таблицы: rlLldpXMedNetPolVoiceUpdateMode — 1.3.6.1.4.1.89.110.1.7
```

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.110.1.7.0 i {manual(0), auto(1)}
```

Пример настройки lldp-med политики в режиме auto

```
Команда CLI:
no lldp med network-policy voice auto
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.110.1.7.0 i 0
```

7 НАСТРОЙКА ІРV4-АДРЕСАЦИИ

Создание IP-адреса на interface vlan:

MIB: rlip.mib

Используемые таблицы: rslpAddrEntry — 1.3.6.1.4.1.89.26.1.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.26.1.1.2.{ip address(DEC)} i {ifIndex} \
1.3.6.1.4.1.89.26.1.1.3.{ip address(DEC)} a {netmask}
```

Пример настройки адреса 192.168.10.30/24 на vlan 30

Команда CLI: interface vlan 30 ip address 192.168.10.30 /24

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.26.1.1.2.192.168.10.30 i 100029 \
1.3.6.1.4.1.89.26.1.1.3.192.168.10.30 a 255.255.255.0

<u>Удаление IP-адреса на interface vlan:</u>

MIB: rlip.mib

Используемые таблицы: rslpAddrEntry — 1.3.6.1.4.1.89.26.1.1

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.26.1.1.2.{ip address(DEC)} i {ifIndex} \
    1.3.6.1.4.1.89.26.1.1.3.{ip address(DEC)} a {netmask} \
    1.3.6.1.4.1.89.26.1.1.6.{ip address(DEC)} i 2
```

Пример удаления IP-адреса 192.168.10.30 на интерфейсе vlan 30

Komaндa CLI: interface vlan 30 no ip address 192.168.10.30

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.26.1.1.2.192.168.10.30 i 100029 \ 1.3.6.1.4.1.89.26.1.1.3.192.168.10.30 a 255.255.255.0 \ 1.3.6.1.4.1.89.26.1.1.6.192.168.10.30 i 2

Получение IP-адреса по DHCP на interface vlan

MIB: radlan-dhcpcl-mib.mib

Используемые таблицы: rlDhcpClActionStatus — 1.3.6.1.4.1.89.76.3.1.2

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.76.3.1.2.{ifIndex} i {createAndGo(4), destroy(6)}
```

Пример

Komaндa CLI: interface vlan 30 ip address dhcp

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \1.3.6.1.4.1.89.76.3.1.2.100029 i 4

Добавить/удалить шлюз по умолчанию

MIB: rlip.mib

Используемые таблицы: rllnetStaticRouteEntry — 1.3.6.1.4.1.89.26.28.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.26.28.1.4.0.0.0.0.0.1.4.{IP address}.0 i {metric(4)} \
1.3.6.1.4.1.89.26.28.1.4.0.0.0.0.1.4.{IP address}.0 i {remote(4)} \
1.3.6.1.4.1.89.26.28.1.4.0.0.0.0.0.1.4.{IP address}.0 i {createAndGo (4),
destroy(6)}
```

Пример добавления ip default-gateway 192.168.1.10

Команда CLI:

ip default-gateway 192.168.1.10

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.26.28.1.7.1.4.0.0.0.0.0.1.4.192.168.1.10.0 u 4 \
1.3.6.1.4.1.89.26.28.1.8.1.4.0.0.0.0.0.1.4.192.168.1.10.0 i 4 \
1.3.6.1.4.1.89.26.28.1.10.1.4.0.0.0.0.0.1.4.192.168.1.10.0 i 4
```

8 НАСТРОЙКА ІРV6-АДРЕСАЦИИ

Включение/выключение IPv6 адресации на interface vlan

MIB: ip-mib.mib

Используемые таблицы: ipv6InterfaceEnableStatus — 1.3.6.1.2.1.4.30.1.5

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.2.1.4.30.1.5.{ifindex} i {enable(1), disable(2)}
```

Пример включения IPv6 адресации на vlan 2

```
Команда CLI:
interface vlan 2
ipv6 enable
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.4.30.1.5.100001 i 1
```

Создание/Удаление IPv6 адреса на interface vlan

MIB: rlip.mib

Используемые таблицы: rllpAddressEntry — 1.3.6.1.4.1.89.26.36.1

```
snmpset -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.26.36.1.5.{количество байт в адресе}.{каждый байт в десятичном

виде через разделитель}.2.0 i {ifindex} \

1.3.6.1.4.1.89.26.36.1.13.{количество байт в адресе}.{каждый байт в десятичном

виде через разделитель}.2.0 u {маска в десятичном виде}\

1.3.6.1.4.1.89.26.36.1.11.{количество байт в адресе}.{каждый байт в десятичном

виде через разделитель}.2.0 i {createAndGo (4), destroy(6)}
```

Пример добавления адреса 2001::1/64 на vlan 2

Komaндa CLI: interface vlan 2 ipv6 address 2001::1/64

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.26.36.1.5.2.16.32.1.0.0.0.0.0.0.0.0.0.0.0.0.0.1.2.0 i 100001 \
1.3.6.1.4.1.89.26.36.1.13.2.16.32.1.0.0.0.0.0.0.0.0.0.0.0.0.0.1.2.0 u 64 \
1.3.6.1.4.1.89.26.36.1.11.2.16.32.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.2.0 i 4
```

9 HACTPOЙKA GREEN ETHERNET

Глобальное отключение green-ethernet short-reach

MIB: rlgreeneth.mib

Используемые таблицы: rlGreenEthShortReachEnable — 1.3.6.1.4.1.89.134.2

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.134.2.0 i {true (1), false (2)}

Пример

Команда CLI: no green-ethernet short-reach

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.134.2.0 i 2
```

Глобальное отключение green-ethernet energy-detect

MIB: rlgreeneth.mib

Используемые таблицы: rlGreenEthEnergyDetectEnable — 1.3.6.1.4.1.89.134.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.134.1.0 i {true (1), false (2)}
```

Пример

Komaндa CLI: no green-ethernet energy-detect

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.134.1.0 i 2
```

Просмотр параметров green-ethernet

MIB: rlGreenEth.mib

Используемые таблицы: rlGreenEthCumulativePowerSaveMeter — 1.3.6.1.4.1.89.134.5

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.134.5
```

Пример

Komaндa CLI: show green-ethernet

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.134.5

10 НАСТРОЙКА КОЛЬЦЕВЫХ ПРОТОКОЛОВ

10.1 Протокол ERPS

<u>Определение номера west порта</u>

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSWestPort — 1.3.6.1.4.1.35265.35.1.1.3.1.1.2

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.35.1.1.3.1.1.2
```

Пример

Команда CLI: show erps

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \

1.3.6.1.4.1.35265.35.1.1.3.1.1.2

Просмотр состояния west порта

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSWestPortState — 1.3.6.1.4.1.35265.35.1.1.3.1.1.3

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.35.1.1.3.1.1.3
```

Пример

Komaндa CLI: show erps vlan 10

```
Команда SNMP:
```

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.35.1.1.3.1.1.3
```


Возможные состояния порта:

- 1. Forwarding (1)
- 2. Blocking (2)
- 3. Signal-fail (3)
- 4. Manual-switch (4)
- 5. Forced-switch (5)

<u>Определение номера east порта</u>

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSEastPort — 1.3.6.1.4.1.35265.35.1.1.3.1.1.4

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.35.1.1.3.1.1.4
```

Пример

Команда CLI: show erps

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.35265.35.1.1.3.1.1.4

<u>Просмотр состояния east порта</u>

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSEastPortState — 1.3.6.1.4.1.35265.35.1.1.3.1.1.5

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.35.1.1.3.1.1.5

Пример

Команда CLI: show erps vlan 10

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.35.1.1.3.1.1.5

Возможные состояния порта:

- 1. Forwarding (1)
- 2. Blocking (2)
- 3. Signal-fail (3)
- 4. Manual-switch (4)
- 5. Forced-switch (5)

Просмотр состояния кольца

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSRingState — 1.3.6.1.4.1.35265.35.1.1.3.1.1.12

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.35.1.1.3.1.1.12

Пример

Команда CLI: show erps vlan 10

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.35.1.1.3.1.1.12

<u>Возможные состояния кольца erps:</u>

- 1. Init (1)
- 2. Idle (2)
- 3. Protection (3)
- 4. Manual-switch (4)
- 5. Forced-switch (5)
- 6. Pending (6)

10.2 Настройка протокола Spanning-tree

Включение/отключение протокола Spanning-tree

MIB: radlan-brgmacswitch.mib

Используемые таблицы: rldot1dStp — 1.3.6.1.4.1.89.57.2.3

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.57.2.3.0 i {enabled(1), disabled(2)}
```

Пример отключения Spanning-tree

```
Komaндa CLI:
no spanning-tree
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.57.2.3.0 i 2
```

Включение/выключение протокола spanning-tree на конфигурируемом интерфейсе

MIB: BRIDGE-MIB

Используемые таблицы: dot1dStpPortTable — 1.3.6.1.2.1.17.2.15.1.4

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.17.2.15.1.4.{ifIndex} i {enabled(1), disabled(2)}
```

Пример отключения работы spanning-tree на интерфейсе GigabitEthernet1/0/2

```
Команда CLI:
interface GigabitEthernet1/0/2
spanning-tree disable
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
```

```
1.3.6.1.2.1.17.2.15.1.4.50 i 2
```

<u>Включение/выключение режима обработки пакетов BPDU интерфейсом, на котором</u> выключен протокол STP

MIB: radlan-bridgemibobjects-mib.mib

Используемые таблицы: rldot1dStpPortTable — 1.3.6.1.4.1.89.57.2.13.1.4

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.57.2.13.1.4.{ifIndex} i {filtering(1), flooding(2)}
```

Пример включения фильтрации BPDU на интерфейсе Gigabitethernet 1/0/2

Команда CLI: interface gigabitethernet 1/0/2 spanning-tree bpdu filtering

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.57.2.13.1.4.50 i 1

Настройка режима работы протокола spanning-tree

MIB: draft-ietf-bridge-rstpmib.mib

Используемые таблицы: dot1dStpVersion — 1.3.6.1.2.1.17.2.16

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.17.2.16.0 i {stp(0), rstp(2), mstp(3)}
```

Пример установки режима работы протокола Spanning-tree

Komaндa CLI: spanning-tree mode rstp

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.17.2.16.0 i 2
```

Просмотр роли порта в STP

MIB: radlan-bridgemibobjects-mib.mib

Используемые таблицы: rldot1dStpPortRole — 1.3.6.1.4.1.89.57.2.13.1.7

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.57.2.13.1.7.{ifindex}
```

Пример просмотра роли Gigabitethernet0/2 в STP

```
Kоманда CLI:
show spanning-tree Gigabitethernet0/2
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.57.2.13.1.7.50
```


Возможные состояния порта:

- 1. Disabled (1)
- 2. Alternate (2)
- 3. Backup(3)
- 4. Root(4)
- 5. Designated(5)

<u>Просмотр состояния порта в MSTP</u>

MIB: radlan-bridgemibobjects-mib.mib

Используемые таблицы: rldot1sMstpInstancePortState — 1.3.6.1.4.1.89.57.6.2.1.4

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.57.6.2.1.4.1.{ifindex}

Пример просмотра состояния Gigabitethernet0/2 в mstp

```
Kоманда CLI: show spanning-tree Gigabitethernet0/2
```

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.57.6.2.1.4.1.50

Возможные состояния порта:

Disabled (1)
 Blocking (2)
 Listening (3)
 Forwarding(5)

Просмотр времени с последнего перестроения (topology change)

MIB: BRIDGE-MIB

Используемые таблицы: dot1dStpTimeSinceTopologyChange — 1.3.6.1.2.1.17.2.3.0

snmpwalk -v2c -c <community> <IP address> $\ \ 1.3.6.1.2.1.17.2.3.0$

Пример просмотра времени с последнего перестроения

Команда CLI: show spanning-tree

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 1.3.6.1.2.1.17.2.3.0

Количество перестроений (topology change)

MIB: BRIDGE-MIB

Используемые таблицы: dot1dStpTopChanges — 1.3.6.1.2.1.17.2.4.0

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.17.2.4.0
```

Пример

```
Komaндa CLI:
show spanning-tree
```

```
Команда SNMP:
```

snmpwalk -v2c -c public 192.168.1.30 1.3.6.1.2.1.17.2.4.0

<u>Просмотр интерфейса, с которого принят последний topology change</u>

MIB: eltBridgeExtMIB.mib

Используемые таблицы: eltdot1dStpLastTopologyChangePort — 1.3.6.1.4.1.35265.1.23.1.401.0.5.2

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.1.401.0.5.2

Пример просмотра интерфейса, с которого принят последний topology change

Команда CLI: show spanning-tree

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 1.3.6.1.4.1.35265.1.23.1.401.0.5.2

11 ГРУППОВАЯ АДРЕСАЦИЯ

11.1 Правила групповой адресации (multicast addressing)

Запрещение динамического добавления порта к многоадресной группе

MIB: rlbrgmulticast.mib

Используемые таблицы: rlBrgStaticInetMulticastEntry — 1.3.6.1.4.1.89.116.5.1

snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.116.5.1.6.{vlan id}.1.4.{ip address(DEC)}.1.4.0.0.0.0 x 000000000000000 \ 1.3.6.1.4.1.89.116.5.1.7.{vlan id}.1.4.{ip address(DEC)}.1.4.0.0.0.0 x {Еитовая маска интерфейса} \ 1.3.6.1.4.1.89.116.5.1.8.{vlan id}.1.4.{ip address(DEC)}.1.4.0.0.0.0 i {createAndGo(4), destroy (6)}

Пример запрета изучения группы 239.200.200.17 на порте GigabitEthernet 1/0/1 в vlan 622

Komaндa CLI: interface vlan 622 bridge multicast forbidden ip-address 239.200.200.17 add GigabitEthernet 1/0/1

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.116.5.1.6.622.1.4.239.200.200.17.1.4.0.0.0.0 x 00000000000000
\
1.3.6.1.4.1.89.116.5.1.7.622.1.4.239.200.200.17.1.4.0.0.0.0 x 0000000000000000
\
1.3.6.1.4.1.89.116.5.1.8.622.1.4.239.200.200.17.1.4.0.0.0.0 i 4

1) Суммарное количество цифр в OID 1.3.6.1.4.1.89.116.5.1.6 и OID 1.3.6.1.4.1.89.116.5.1.7 должно быть одинаковым и чётным.

2) Методику расчета битовой маски можно посмотреть в разделе «Приложение А. Методика расчета битовой маски».

Запрещение прохождения незарегистрированного Multicast-трафика

MIB: rlbrgmulticast.mib

Используемые таблицы: rlMacMulticastUnregFilterEnable — 1.3.6.1.4.1.89.55.4.1

snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.55.4.1.0 х "{Битовая маска для интерфейсов}"

Пример запрещения прохождения незарегистрированного Multicast-трафика для портов GigabitEthernet 1/0/20-21

Команда CLI: interface range GigabitEthernet 1/0/20-21 bridge multicast unregistered filtering

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.55.4.1.0 x "00000000000000000018"

1) Для удаления настройки надо заменить соответствующие портам поля в битовой маске на 0.

2) Методику расчета битовой маски можно посмотреть в разделе «Приложение А. Методика расчета битовой маски».

Фильтрация многоадресного трафика

MIB: rlbrgmulticast.mib

Используемые таблицы: rlMacMulticastEnable — 1.3.6.1.4.1.89.55.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.55.1.0 i {true(1), false(2)}
```

Пример включения фильтрации многоадресного трафика

Команда CLI: bridge multicast filtering

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.55.1.0 i 1
```

Глобальное включение iqmp snooping

MIB: rlbrgmulticast.mib

Используемые таблицы: rllgmpSnoopEnable — 1.3.6.1.4.1.89.55.2.2

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.55.2.2.0 i {true(1), false(2)}
```

Пример

Команда CLI: ip igmp snooping

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.55.2.2.0 i 1

Включение igmp snooping в vlan

MIB: rlbrgmulticast.mib

Используемые таблицы: rllgmpMldSnoopVlanEnable — 1.3.6.1.4.1.89.55.5.5.1.3

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.55.5.5.1.3.1.{vlan id} i {true(1), false(2)}
```

Пример включения igmp snooping в vlan 30

```
Команда CLI:
ip igmp snooping vlan 30
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.55.5.5.1.3.1.30 i 1
```

Просмотр таблицы iqmp snooping

MIB: rlbrgmulticast.mib

Используемые таблицы: rllgmpMldSnoopMembershipTable — 1.3.6.1.4.1.89.55.5.4

```
snmpwalk -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.55.5.4
```

Пример

Команда CLI: show ip igmp snooping groups

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.55.5.4

<u>Настройка multicast-tv vlan (MVR)</u>

MIB: rlvlan.mib

Используемые таблицы: vlanMulticastTvEntry — 1.3.6.1.4.1.89.48.44.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.44.1.1.{ifIndex} u {vlan-id} \
1.3.6.1.4.1.89.48.44.1.2.50 i {createAndGo(4), destroy (6)}
```

Пример настройки multicast-tv vlan 622 на интерфейсе gigabitethernet 1/0/2

Команда CLI: interface gigabitethernet 1/0/2 switchport access multicast-tv vlan 622

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.44.1.1.50 u 622 \
1.3.6.1.4.1.89.48.44.1.2.50 i 4
```


Настройка режима работы multicast-tv vlan <customer/access/trunk/general> зависит от режима настройки порта, т.е. от команды switchport mode customer/access/trunk/general.

11.2 Функции ограничения multicast-трафика

Создание multicast snooping profile

MIB: eltIpMulticast.mib

Используемые таблицы: eltMesIpMulticast — 1.3.6.1.4.1.35265.1.23.46.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.46.1.1.2.{Index of profile} s {profile name} \
1.3.6.1.4.1.35265.1.23.46.1.1.3.{Index of profile} i {deny(1), permit(2)} \
1.3.6.1.4.1.35265.1.23.46.1.1.4.{Index of profile} i {createAndGo(4),
destroy(6)}
```

Пример создания профиля с именем IPTV (предположим, что профиль будет иметь порядковый номер 3)

Kоманда CLI: multicast snooping profile IPTV

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.46.1.1.2.3 s IPTV \
1.3.6.1.4.1.35265.1.23.46.1.1.3.3 i 1 \
1.3.6.1.4.1.35265.1.23.46.1.1.4.3 i 4

Указание диапазонов Multicast-адресов в multicast snooping profile

MIB: eltIpMulticast.mib

Используемые таблицы: eltMesIpMulticast — 1.3.6.1.4.1.35265. 1.23.46.3

```
snmpset -v2c -c <community> <IP address> \

1.3.6.1.4.1.35265. 1.23.46.3.1.3.{index of rule}.{Index of profile} i

{ip(1),ipv6(2)} \

1.3.6.1.4.1.35265. 1.23.46.3.1.4.{index of rule}.{Index of profile} x {ip-

адрес начала диапазона в шестнадцатеричном виде} \

1.3.6.1.4.1.35265. 1.23.46.3.1.5.{index of rule}.{Index of profile} x {ip-

адрес конца диапазона в шестнадцатеричном виде} \

1.3.6.1.4.1.35265. 1.23.46.3.1.6.{index of rule}.{Index of profile} i

{createAndGo(4), destroy(6)}
```

Пример ограничения мультикаст групп 233.7.70.1-233.7.70.10 для профиля с именем IPTV (предположим, что профиль имеет порядковый номер 3. В первом профиле 2 правила, во втором—одно)

Komaндa CLI: multicast snooping profile IPTV match ip 233.7.70.1 233.7.70.10

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.46.3.1.3.4.3 i 1 \
1.3.6.1.4.1.35265.1.23.46.3.1.4.4.3 x E9074601 \
1.3.6.1.4.1.35265.1.23.46.3.1.5.4.3 x E907460A \
1.3.6.1.4.1.35265.1.23.46.3.1.6.4.3 i 4
```


index of rule — считается по сумме всех правил во всех профилях

Назначение multicast snooping profile на порт

MIB: eltIpMulticast.mib

Используемые таблицы: eltMesIpMulticast — 1.3.6.1.4.1.35265. 1.23.46.7.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.46.7.1.1.{ifIndex}.{Index of profile} i {ifIndex} \
1.3.6.1.4.1.35265. 1.23.46.7.1.2.{ifIndex}.{Index of profile} i {Index of
profile} \
1.3.6.1.4.1.35265. 1.23.46.7.1.3.{ifIndex}.{Index of profile} i
{createAndGo(4), destroy(6)}
```

ACLTEX

Пример добавления профиля test (с индексом профиля 3) на интерфейс Gigabitethernet 1/0/2

```
Команда CLI:
interface Gigabitethernet 1/0/2
multicast snooping add test
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.46.7.1.1.50.3 i 50 \
1.3.6.1.4.1.35265.1.23.46.7.1.2.50.3 i 3 \
1.3.6.1.4.1.35265.1.23.46.7.1.3.50.3 i 4

Настройка ограничения количества Multicast-групп на порте

MIB: eltIpMulticast.mib

Используемые таблицы: eltMesIpMulticast — 1.3.6.1.4.1.35265.1.23.46.6.1

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.46.6.1.2.{ifIndex} i {MAX number}

Пример настройки ограничения в три Multicast-группы на интерфейсе Gigabitethernet 1/0/2

Komaндa CLI: interface Gigabitethernet 1/0/2 multicast snooping max-groups 3

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.46.6.1.2.50 і 3

12 ФУНКЦИИ УПРАВЛЕНИЯ

12.1 Механизм ААА

<u>Добавление нового пользователя</u>

MIB: rlaaa.mib

Используемые таблицы: rlAAALocalUserTable — 1.3.6.1.4.1.89.79.17

```
snmpset -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.79.17.1.1.{number of letters}.{Login in DEC, каждая буква

логина отделяется от следующей точкой} s {login} \

1.3.6.1.4.1.89.79.17.1.2.{number of letters}.{Login in DEC, каждая буква

логина отделяется от следующей точкой} s "#{encoding password}" \

1.3.6.1.4.1.89.79.17.1.3.{number of letters}.{Login in DEC, каждая буква

логина отделяется от следующей точкой} i {privelege level(1-15)} \

1.3.6.1.4.1.89.79.17.1.4.{number of letters}.{Login in DEC, каждая буква

логина отделяется от следующей точкой} i {privelege level(1-15)} \

1.3.6.1.4.1.89.79.17.1.4.{number of letters}.{Login in DEC, каждая буква

логина отделяется от следующей точкой} i {create and go(4)}
```

Пример добавления пользователя techsup с паролем password и уровнем привилегий 15

Команда CLI:

username techsup password password privilege 15

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.79.17.1.1.7.116.101.99.104.115.117.112 s techsup \
1.3.6.1.4.1.89.79.17.1.2.7.116.101.99.104.115.117.112 s
"#5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8" \
1.3.6.1.4.1.89.79.17.1.3.7.116.101.99.104.115.117.112 i 15
\1.3.6.1.4.1.89.79.17.1.4.7.116.101.99.104.115.117.112 i 4
```


1. Логин переводится из ASCII в HEX с помощью таблицы, которую можно найти по ссылке https://ru.wikipedia.org/wiki/ASCII

2. Пароль задается исключительно в шифрованном виде, пишется обязательно в кавычках, перед паролем добавляется #.

Настройка методов авторизации для login-пользователя

MIB: rlaaa.mib

Используемые таблицы: rlAAAMethodListEntry — 1.3.6.1.4.1.89.79.15.1

snmpset -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.79.15.1.2.15.{"login_c_default" in DEC, каждая буква логина отделяется от следующей точкой} i {enable(2),radius(4),tacacs(5),local(3)} \ 1.3.6.1.4.1.89.79.15.1.3.15.{"login_c_default" in DEC, каждая буква логина отделяется от следующей точкой} i {enable(2),radius(4),tacacs(5),local(3)} \ 1.3.6.1.4.1.89.79.15.1.4.15.{"login_c_default" in DEC, каждая буква логина отделяется от следующей точкой} i {enable(2),radius(4),tacacs(5),local(3)} \ 1.3.6.1.4.1.89.79.15.1.4.15.{"login_c_default" in DEC, каждая буква логина отделяется от следующей точкой} i {enable(2),radius(4),tacacs(5),local(3)} \ 1.3.6.1.4.1.89.79.15.1.10.15.{"login_c_default" in DEC, каждая буква логина отделяется от следующей точкой} i 1 \ 1.3.6.1.4.1.89.79.15.1.10.15.{"login_n_default" in DEC, каждая буква логина отделяется от следующей точкой} i 1

Aeltex

Пример

```
Команда CLI:

aaa authentication login authorization default local

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.79.15.1.2.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108

.116 i 3 \

1.3.6.1.4.1.89.79.15.1.3.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108

.116 i 0 \

1.3.6.1.4.1.89.79.15.1.4.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108

.116 i 0 \

1.3.6.1.4.1.89.79.15.1.10.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108

.116 i 1 \

1.3.6.1.4.1.89.79.15.1.10.15.108.111.103.105.110.95.99.95.100.101.102.97.117.10

8.116 i 1 \

1.3.6.1.4.1.89.79.15.1.10.15.108.111.103.105.110.95.110.95.100.101.102.97.117.10
```


108.111.103.105.110.95.99.95.100.101.102.97.117.108.116 переводится из ASCII таблицы (расшифровывается login_c_default)

<u>Удаление настройки методов авторизации для loqin-пользователя</u>

MIB: rlaaa.mib

Используемые таблицы: rlAAAMethodListEntry — 1.3.6.1.4.1.89.79.15.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.15.1.2.15.{"login_c_default" in DEC, каждая буква логина
отделяется от следующей точкой} i 3 \
1.3.6.1.4.1.89.79.15.1.3.15.{"login_c_default" in DEC, каждая буква логина
отделяется от следующей точкой} i 0 \
1.3.6.1.4.1.89.79.15.1.4.15.{"login_c_default" in DEC, каждая буква логина
отделяется от следующей точкой} i 0 \
1.3.6.1.4.1.89.79.15.1.10.15.{"login_c_default" in DEC, каждая буква логина
отделяется от следующей точкой} i 0 \
1.3.6.1.4.1.89.79.15.1.10.15.{"login_c_default" in DEC, каждая буква логина
отделяется от следующей точкой} i 0 \
1.3.6.1.4.1.89.79.15.1.10.15.{"login_n_default" in DEC, каждая буква логина
отделяется от следующей точкой} i 0
```

Пример удаления методов авторизации для enable пользователя

```
Команда CLI:
no aaa authentication login default
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.79.15.1.2.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108
.116 i 3 \
1.3.6.1.4.1.89.79.15.1.3.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108
.116 i 0 \
1.3.6.1.4.1.89.79.15.1.4.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108
.116 i 0
\1.3.6.1.4.1.89.79.15.1.10.15.108.111.103.105.110.95.99.95.100.101.102.97.117.1
08.116 i 0 \
1.3.6.1.4.1.89.79.15.1.10.15.108.111.103.105.110.95.99.95.100.101.102.97.117.1
```

Настройка методов авторизации для enable-пользователя

MIB: rlaaa.mib

Используемые таблицы: rlAAAMethodListEntry — 1.3.6.1.4.1.89.79.15.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.15.1.2.16.{"enable_c_default" in DEC, каждая буква логина
oтделяется от следующей точкой} i {enable(2),radius(4),tacacs(5)} \
1.3.6.1.4.1.89.79.15.1.3.16.{"enable_c_default" in DEC, каждая буква логина
oтделяется от следующей точкой} i {enable(2),radius(4),tacacs(5)} \
1.3.6.1.4.1.89.79.15.1.4.16.{"enable_c_default" in DEC, каждая буква логина
oтделяется от следующей точкой} i {enable(2),radius(4),tacacs(5)} \
1.3.6.1.4.1.89.79.15.1.4.16.{"enable_c_default" in DEC, каждая буква логина
oтделяется от следующей точкой} i {enable(2),radius(4),tacacs(5)} \
1.3.6.1.4.1.89.79.15.1.10.16.{"enable_c_default" in DEC, каждая буква логина
oтделяется от следующей точкой} i 1 \
1.3.6.1.4.1.89.79.15.1.10.16.{"enable_n_default" in DEC, каждая буква логина
oтделяется от следующей точкой} i 1
```

Пример

Команда CLI:

aaa authentication enable authorization default tacacs radius enable

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.79.15.1.2.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.1
08.116 i 5 \
1.3.6.1.4.1.89.79.15.1.3.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.1
08.116 i 4 \
1.3.6.1.4.1.89.79.15.1.4.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.1
08.116 i 2 \
1.3.6.1.4.1.89.79.15.1.10.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.1
108.116 i 1 \
1.3.6.1.4.1.89.79.15.1.10.16.101.110.97.98.108.101.95.110.95.100.101.102.97.117.1

101.110.97.98.108.101.95.99.95.100.101.102.97.117.108.116 переводится из ASCII таблицы (расшифровывается enable_c_default)

<u>Удаление настройки методов авторизации для enable-пользователя</u>

MIB: rlaaa.mib

Используемые таблицы: rlAAAMethodListEntry — 1.3.6.1.4.1.89.79.15.1

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.15.1.2.16.{"enable_c_default" in DEC, каждая буква логина
oтделяется от следующей точкой} i {enable(0),radius(0),tacacs(2)} \
1.3.6.1.4.1.89.79.15.1.3.16.{"enable_c_default" in DEC, каждая буква логина
oтделяется от следующей точкой} i {enable(0),radius(0),tacacs(2)} \
1.3.6.1.4.1.89.79.15.1.4.16.{"enable_c_default" in DEC, каждая буква логина
oтделяется от следующей точкой} i {enable(0),radius(0),tacacs(2)} \
1.3.6.1.4.1.89.79.15.1.10.16.{"enable_c_default" in DEC, каждая буква логина
oтделяется от следующей точкой} i 0 \
1.3.6.1.4.1.89.79.15.1.10.16.{"enable_c_default" in DEC, каждая буква логина
oтделяется от следующей точкой} i 0 \

ACUTEX

Пример удаления методов авторизации для enable пользователя

```
Команда CLI:

no aaa authentication enable default

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.79.15.1.2.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.1

08.116 i 2 \

1.3.6.1.4.1.89.79.15.1.3.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.1

08.116 i 0 \

1.3.6.1.4.1.89.79.15.1.4.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.1

08.116 i 0 \

1.3.6.1.4.1.89.79.15.1.10.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.1

08.116 i 0 \

1.3.6.1.4.1.89.79.15.1.10.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.1

08.116 i 0 \
```

12.2 Настройка доступа

Включение telnet-cepвера

MIB: radlan-telnet-mib.mib

Используемые таблицы: rlTelnetEnable — 1.3.6.1.4.1.89.58.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.58.7.0 i {on(1), off(2)}
```

Пример включения telnet-сервера

```
Koмaндa CLI:
ip telnet server
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.58.7.0 і 1
```

Включение ssh сервера

MIB: rlssh.mib

Используемые таблицы: rlSshServerEnable — 1.3.6.1.4.1.89.78.2.102

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.78.2.102.0 i {on(1), off(2)}
```

Пример включения ssh-сервера

```
Команда CLI:
ip ssh server
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.78.2.102.0 i 1
```
Просмотр активных сессий

MIB: rIAAA.mib

Используемые таблицы: rlAAAUserInetName — 1.3.6.1.4.1.89.79.57.1.5

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.57.1.5
```

Пример просмотра активных сессий

Команда CLI: Show users

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.79.57.1.5

13 ЗЕРКАЛИРОВАНИЕ ПОРТОВ

Настройка зеркалирования портов

MIB: rfc2613.mib

Используемые таблицы: portCopyTable — 1.3.6.1.2.1.16.22.1.3.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.16.22.1.3.1.1.4.{ifindex src port}.{ifindex dst port} i
{copyRxOnly(1), copyTxOnly(2), copyBoth(3)} \
1.3.6.1.2.1.16.22.1.3.1.1.5.{ifindex src port}.{ifindex dst port} i
{createAndGo(4), destroy(6)}
```

Пример зеркалирования трафика с интерфейса GigabitEthernet 1/0/1 на интерфейс GigabitEthernet 1/0/2

Команда CLI:

```
interface GigabitEthernet 1/0/2
port monitor GigabitEthernet 1/0/1
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.16.22.1.3.1.1.4.49.50 i 3 \
1.3.6.1.2.1.16.22.1.3.1.1.5.49.50 i 4

Настройка зеркалирования vlan

MIB: rfc2613.mib

Используемые таблицы: portCopyTable — 1.3.6.1.2.1.16.22.1.3.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.16.22.1.3.1.1.4.{ifindex vlan}.{ifindex dst port} i
{copyRxOnly(1)} \
1.3.6.1.2.1.16.22.1.3.1.1.5.{ifindex vlan}.{ifindex dst port} i
{createAndGo(4), destroy(6)}
```

Пример настройки зеркалирования vlan 622 на интерфейс GigabitEthernet 1/0/2

```
Komaндa CLI:
interface GigabitEthernet 1/0/2
port monitor vlan 622
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.16.22.1.3.1.1.4.100621.50 i 1 \
1.3.6.1.2.1.16.22.1.3.1.1.5.100621.50 i 4
```

14 ФУНКЦИИ ДИАГНОСТИКИ ФИЗИЧЕСКОГО УРОВНЯ

14.1 Диагностика медного кабеля

Запуск TDR теста для порта

MIB: rlphy.mib

Используемые таблицы: rlPhyTestSetType — 1.3.6.1.4.1.89.90.1.1.1.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.90.1.1.1.1 {ifIndex} i 2
```

Пример запуска tdr для порта GigabitEthernet 1/0/12

```
Команда CLI:
test cable-diagnostics tdr interface GigabitEthernet 1/0/12
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.90.1.1.1.1.60 i 2
```


Для запуска теста tdr-fast указать параметр і 25.

Чтение информации по парам при тестировании методом TDR

MIB: eltPhy.mib

Используемые таблицы: eltPhyTdrTestTable — 1.3.6.1.4.1.35265.1.23.90.1.1

• Статус 1 (1-2) пары:

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.90.1.1.1.2.{ifIndex}

• Статус 2 (3-6) пары:

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.90.1.1.1.3.{ifIndex}

• Статус 3 (4-5) пары:

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.90.1.1.1.4.{ifIndex}

• Статус 4 (7-8) пары:

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.90.1.1.1.5.{ifIndex}

Aeltex

Пример просмотра статуса пары 1 на интерфейсе GigabitEthernet 1/0/12

```
Команда CLI:
show cable-diagnostics tdr interface GigabitEthernet 1/0/12
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.90.1.1.1.2.60
```


Варианты статусов пар:

test-failed(0) — физическая неисправность; либо в момент запроса идет диагностика линии; ok(1) — пара в порядке; open(2) — разрыв; short(3) — контакты пары замкнуты; impedance-mismatch(4) — разница в сопротивлении (слишком большое затухание в линии); short-with-pair-1(5) — замыкание между парами; short-with-pair-2(6) — замыкание между парами; short-with-pair-3(7) — замыкание между парами; short-with-pair-4(8) — замыкание между парами.

<u>Измерение длины пар для метода TDR</u>

MIB: eltPhy.mib

Используемые таблицы: eltPhyTdrTestTable — 1.3.6.1.4.1.35265. 1.23.90.1.1

• Длина 1 (1-2) пары:

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.90.1.1.1.6.{ifIndex}

• Длина 2 (3-6) пары:

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.90.1.1.1.7.{ifIndex}

• Длина 3 (4-5) пары:

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.90.1.1.1.8.{ifIndex}

• Длина 4 (7-8) пары:

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.90.1.1.1.9.{ifIndex}

Пример измерения длины пары 4 для метода tdr на интерфейсе GigabitEthernet 1/0/12

```
Команда CLI:
show cable-diagnostics tdr interface GigabitEthernet 1/0/12
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
```

1.3.6.1.4.1.35265.1.23.90.1.1.1.9.60

Измерение длины кабеля методом, основанном на затухании

MIB: rlphy.mib

Используемые таблицы: rlPhyTestGetResult — 1.3.6.1.4.1.89.90.1.2.1.3

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.90.1.2.1.3.{ifIndex}

Пример измерения длины кабеля на всех активных портах

Команда CLI: show cable-diagnostics cable-length

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.90.1.2.1.3

14.2 Диагностика оптического трансивера

Снятие показаний DDM

MIB: rlphy.mib

Используемые таблицы: rlPhyTestGetResult — 1.3.6.1.4.1.89.90.1.2.1.3

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.90.1.2.1.3.{индекс порта}.{тип параметра}
```

Пример запроса показаний DDM с интерфейса TengigabitEthernet1/0/1 (для всех параметров)

```
Команда CLI:
show fiber-ports optical-transceiver interface TengigabitEthernet0/1
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.90.1.2.1.3.105
```


Тип параметра может принимать следующие значения:

rlPhyTestTableTransceiverTemp (5) — температура SFP трансивера; rlPhyTestTableTransceiverSupply (6) — напряжение питания в мкВ; rlPhyTestTableTxBias (7) — ток смещения в мкА; rlPhyTestTableTxOutput (8) — уровень мощности на передаче в mDbm; rlPhyTestTableRxOpticalPower (9) — уровень мощности на приеме в mDbm.

<u>Просмотр серийного номера SFP трансивера</u>

MIB: eltMes.mib

Используемые таблицы: eltMesPhdTransceiver — 1.3.6.1.4.1.35265.1.23.53

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.53.1.1.1.6.{индекс порта}
```

Aeltex

Пример	просмотра	серийного	номера	SFP	С	интерфейса	GigabitEthernet	1/0/2	(для	всех
параметров)										

Команда CLI: show fiber-ports optical-transceiver interface GigabitEthernet 1/0/2 Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \

1.3.6.1.4.1.35265.1.23.53.1.1.1.6.50

15 ЭЛЕКТРОПИТАНИЕ ПО ЛИНИЯМ ETHERNET (POE)

Просмотр потребляемой/номинальной мощности РоЕ

MIB: rfc3621.mib

Используемые таблицы: pethMainPseEntry — 1.3.6.1.2.1.105.1.3.1.1

snmpwalk -v2c -c <community> <IP address> \

1.3.6.1.2.1.105.1.3.1.1.{nominal(2), consumed(4)}.{unit}

Пример просмотра потребляемой мощности

Komaндa CLI: show power inline

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.105.1.3.1.1.4.1
```

Просмотр показаний температурного датчика РоЕ

MIB: rlPoe.mib

Используемые таблицы: rlPethPowerPseTemperatureSensor — 1.3.6.1.4.1.89.108.3.1.6

snmpwalk -v2c -c <community> <IP address> \

$1.3.6.1.4.1.89.108.3.1.6.\{unit\}$

Пример просмотра показаний температурного датчика

Команда CLI: show power inline

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.108.3.1.6.1
```

Просмотр лимита мощности на интерфейсе РоЕ

MIB: rlPoe.mib

Используемые таблицы: rlpethPsePortOperPowerLimit — 1.3.6.1.4.1.89.108.1.1.9

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.108.1.1.9.{unit}.{ifindex}
```

Пример просмотра лимита мощности на интерфейсе GigabitEthernet1/0/2

```
Komaндa CLI:
show power inline GigabitEthernet1/0/2
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.108.1.1.9.1.50
```

Просмотр значения мощности на интерфейсе РоЕ

MIB: rfc3621.mib

Используемые таблицы: pethPsePortActualPower — 1.3.6.1.2.1.105.1.1.1.15

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.105.1.1.1.15.{unit}.{ifindex}
```

Пример просмотра значения мощности на интерфейсе GigabitEthernet1/0/2

```
Komaндa CLI:
show power inline GigabitEthernet1/0/2
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.105.1.1.1.15.1.50
```

Просмотр значения тока на интерфейсе РоЕ

MIB: rlPoe.mib

Используемые таблицы: rlpethPsePortOutputCurrent — 1.3.6.1.4.1.89.108.1.1.4

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.108.1.1.4.{unit}.{ifindex}
```

Пример просмотра значения тока на интерфейсе GigabitEthernet1/0/2

```
Kоманда CLI:
show power inline GigabitEthernet1/0/2
Kоманда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
```

```
1.3.6.1.4.1.89.108.1.1.4.1.50
```

Просмотр значения напряжения на интерфейсе РоЕ

MIB: rlPoe.mib

```
Используемые таблицы: rlpethPsePortOutputVoltage — 1.3.6.1.4.1.89.108.1.1.3
```

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.108.1.1.3.{unit}.{ifindex}
```

Пример просмотра значения напряжения на интерфейсе GigabitEthernet1/0/2

```
Komaндa CLI: show power inline GigabitEthernet1/0/2
```

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.108.1.1.3.1.50

Отключение Power over Ethernet на порте

MIB: rfc3621.mib

Используемые таблицы: pethPsePortAdminEnable — 1.3.6.1.2.1.105.1.1.1.3

snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.105.1.1.1.3.{unit}.{ifindex} i {auto(1), never(2)}

Пример отключения РоЕ на порте GigabitEthernet1/0/2

Komaндa CLI: interface GigabitEthernet1/0/2 power inline never

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.2.1.105.1.1.1.3.1.50 i 2

16 ФУНКЦИИ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ

16.1 Функции обеспечения защиты портов

Ограничение количества МАС-адресов, изучаемых на Ethernet-портах

MIB: rlinterfaces.mib

Используемые таблицы: swlfTable — 1.3.6.1.4.1.89.43.1

snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.43.1.1.38.{ifIndex} i {max mac addresses}

Пример ограничения в 20 MAC-адресов на порт GigabitEthernet 1/0/2

Komaндa CLI: interface GigabitEthernet1/0/2 port security max 20

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.38.50 i 20

Включение port security

MIB: rlinterfaces.mib

Используемые таблицы: swlfPortLockIfRangeTable — 1.3.6.1.4.1.89.43.6

```
snmpset -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.43.6.1.3.1 i {locked(1), unlocked(2)} \

1.3.6.1.4.1.89.43.6.1.4.1 i {discard(1), forwardNormal(2), discardDisable(3),

действие над пакетом, не попавшим под правила port security} \

1.3.6.1.4.1.89.43.6.1.5.1 i {true(1), false(2). Для отправки трапов} \

1.3.6.1.4.1.89.43.6.1.6.1 i {частота отправки трапов (сек)} \

1.3.6.1.4.1.89.43.6.1.2.1 x {ifindex в виде битовой маски}
```

Пример настройки port security для интерфейсов GigabitEthernet 1/0/1-2

```
Команда CLI:
interface range GigabitEthernet 1/0/1-2
port security discard trap 30
Команда SNMP:
```


Методика расчета битовой маски приведена в разделе «Приложение А. Методика расчета битовой маски».

Установка режима работы port security

MIB: rlinterfaces.mib

Используемые таблицы: swlfTable — 1.3.6.1.4.1.89.43.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.37.{ifIndex} i {disabled(1), dynamic(2), secure-
permanent(3), secure-delete-on-reset(4)}
```

Пример настройки режима ограничения по количеству изученных MAC-адресов на порте GigabitEthernet 1/0/2

Komaндa CLI: interface GigabitEthernet 1/0/2 port security mode max-addresses

```
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.37.50 i 2
```

Просмотр статуса port security

MIB: rlinterfaces.mib

Используемые таблицы: swlfLockAdminStatus — 1.3.6.1.4.1.89.43.1.1.8

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.8
```

Пример просмотра статуса port security

```
Команда CLI:
show ports security
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.8
```

Просмотр типа port security

MIB: rlinterfaces.mib

Используемые таблицы: swlfAdminLockAction — 1.3.6.1.4.1.89.43.1.1.20

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.20
```

Пример просмотра типа port security

```
Komaндa CLI:
show ports security
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.20
```

ACUTEX

<u>Просмотр максимально заданного количества МАС-адресов, изучаемых на Ethernet</u> портах

MIB: rlinterfaces.mib

Используемые таблицы: swlfLockMaxMacAddresses — 1.3.6.1.4.1.89.43.1.1.38

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.38
```

Пример просмотра максимально заданного количества МАС адресов, изучаемых на Ethernetпортах

Команда CLI: show ports security

```
Команда SNMP:
```

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.38
```

Перевод порта в режим изоляции и внутри группы портов

MIB: rlprotectedport.mib

Используемые таблицы: rlProtectedPortsTable — 1.3.6.1.4.1.89.132.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.132.1.1.1.{Ifindex} i {not-protected(1), protected(2)}
```

Пример настройки изоляции на портах GigabitEthernet 1/0/1 и GigabitEthernet 1/0/2

```
Команда CLI:
interface range GigabitEthernet 1/0/1-2
switchport protected-port
```

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.132.1.1.1.49 i 2 \ 1.3.6.1.4.1.89.132.1.1.1.50 i 2

Настройка отправки трафика на uplink-port

MIB: RADLAN-vlan-MIB

Используемые таблицы: vlanPrivateEdgeStatus — 1.3.6.1.4.1.89.48.37.1.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.37.1.1.{Ifindex} i {ifindex} \
1.3.6.1.4.1.89.48.37.1.2.{Ifindex} i {createandGo(4),destroy(6)}
```

Пример

```
Команда CLI:
interface GigabitEthernet 1/0/6
switchport protected GigabitEthernet 1/0/8
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.37.1.1.54 i 56 \
1.3.6.1.4.1.89.48.37.1.2.54 i 4
```

Создание статической привязки в МАС-таблице

MIB: Q-BRIDGE-MIB

Используемые таблицы: dot1qStaticUnicastTable — 1.3.6.1.2.1.17.7.1.3.1

```
snmpset -v2c -c <community> -t 20 -r 0 <IP address> \
1.3.6.1.2.1.17.7.1.3.1.1.4.{vlan id}.{mac address(DEC). Байты MAC-адреса
разделяются точками}.{ifIndex} i {other(1), invalid(2), permanent(3),
deleteOnReset(4), deleteOnTimeout(5)}
```

Пример привязки MAC-адреса 00:22:68:7d:0f:3f в vlan 622 к интерфейсу Gigabitethernet1/0/2 в режиме secure (По дефолту используется режим permanent)

Команда CLI: mac address-table static 00:22:68:7d:0f:3f vlan 622 interface gigabitethernet1/0/2 secure

Команда SNMP:

snmpset -v2c -c private -t 20 -r 0 192.168.1.30 \
1.3.6.1.2.1.17.7.1.3.1.1.4.622.0.34.104.125.15.63.50 i 1

Просмотр МАС-таблицы

MIB: Q-BRIDGE-MIB

Используемые таблицы: dot1qTpFdbTable — 1.3.6.1.2.1.17.7.1.2.2

```
snmpwalk -v2c -c <community> <IP address> \
    1.3.6.1.2.1.17.7.1.2.2
```

Пример

```
Команда CLI: show mac address-table
```

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.17.7.1.2.2
```

Создание статической привязки в агр-таблице

MIB: RFC1213-MIB

```
Используемые таблицы: ipNetToMediaTable — 1.3.6.1.2.1.4.22
```

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.4.22.1.2.{vlan id}.{IP address} x {"MAC address"} \
1.3.6.1.2.1.4.22.1.3.{vlan id}.{IP address} a {IP address} \
1.3.6.1.2.1.4.22.1.4.{vlan id}.{IP address} i 4
```

Пример привязки ір 192.168.1.21 и MAC aa:bb:cc:dd:ee:ff к vlan 1

```
Kоманда CLI:
arp 192.168.1.21 aa:bb:cc:dd:ee:ff vlan 1
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.4.22.1.2.100000.192.168.1.21 x "aabbccddeeff" \
1.3.6.1.2.1.4.22.1.3.100000.192.168.1.21 a 192.168.1.21 \
1.3.6.1.2.1.4.22.1.4.100000.192.168.1.21 i 4
```


1. Для удаления привязки необходимо в поле 1.3.6.1.2.1.4.22.1.4 присвоить значение 2.

2. IP-адрес устройства и IP-адрес создаваемой статической записи в агр-таблице должны находиться в одной подсети.

<u>Просмотр arp-таблицы</u>

MIB: RFC1213-MIB.mib, Q-BRIDGE-MIB.mib

Используемые таблицы: pNetToMediaPhysAddress — 1.3.6.1.2.1.4.22.1.2 dot1qTpFdbEntry — 1.3.6.1.2.1.17.7.1.2.2.1

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.4.22.1.2.{(2) ip address, (3)MAC address}

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.17.7.1.2.2.1

Пример просмотра агр-таблицы

```
Команда CLI:
show arp
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.4.22.1.2
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.17.7.1.2.2.1
```


1. Значение таблицы pNetToMediaPhysAddress отображает IP-адрес и MAC-адрес vlan

2. Значение таблицы dot1qTpFdbEntry — отображает статус и идентификационный номер порта, с которого доступно устройство

16.2 Контроль протокола DHCP и опция 82

Включение/выключение DHCP сервера на коммутаторе

MIB: rldhcp.mib

Используемые таблицы: rlDhcpRelayInterfaceListTable — 1.3.6.1.4.1.89.38.29

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.38.30.0 i {true(1), false(2)}

Пример включения DHCP сервера на коммутаторе

```
Команда CLI: ip dhcp server
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.38.30.0 i 1
```

Просмотр записей таблицы dhcp snooping

MIB: rlBridgeSecurity.mib

Используемые таблицы: rllpDhcpSnoopEntry — 1.3.6.1.4.1.89.112.1.11.1

snmpwalk -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.112.1.11.1

Пример просмотра таблицы dhcp snooping

Команда CLI: Show ip dhcp snooping binding Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.112.1.11.1

Включение/выключение dhcp snooping глобально

MIB: rlbridge-security.mib

Используемые таблицы: rllpDhcpSnoopEnable — 1.3.6.1.4.1.89.112.1.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.1.2.0 i {enable(1), disable(2)}
```

Пример глобального включения dhcp snooping

Команда CLI: ip dhcp snooping Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.112.1.2.0 i 1

Включение/выключение dhcp snooping во vlan

MIB: rlbridge-security.mib

Используемые таблицы: rllpDhcpSnoopEnableVlanTable — 1.3.6.1.4.1.89.112.1.12

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.112.1.12.1.2.{vlan id} i {createAndGo(4), destroy(6)}
```

Пример включения dhcp snooping в vlan 622

```
Komaндa CLI:
ip dhcp snooping vlan 622
```

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.112.1.12.1.2.622 i 4

<u>Настройка ip DHCP information option</u>

MIB: rlbridgesecurity.mib

Используемые таблицы: rllpDhcpOpt82InsertionEnable — 1.3.6.1.4.1.89.112.1.8

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.1.8.0 i {enable(1), disable(2)}

Пример

```
Команда CLI:
ip dhcp information option
```

Команда SNMP:

snmpset -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.112.1.8.0 i 1

Настройка доверенного порта dhcp

MIB: rlbridge-security.mib

Используемые таблицы: rllpDhcpSnoopTrustedPortTable — 1.3.6.1.4.1.89.112.1.13

```
snmpset -v2c -c <community> <IP address>
1.3.6.1.4.1.89.112.1.13.1.2.{ifIndex} i {createAndGo(4), destroy(6)}
```

Пример настройки доверенного интерфейса GigabitEthernet 1/0/2

```
Команда CLI:
interface GigabitEthernet 1/0/2
ip dhcp snooping trust
```

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.112.1.13.1.2.50 i 4

Настройка DHCP relay в vlan

MIB: rldhcp.mib

Используемые таблицы:

rlDhcpRelayInterfaceListVlanId1To1024 — 1.3.6.1.4.1.89.38.29.1.3 rlDhcpRelayInterfaceListVlanId1025To2048 — 1.3.6.1.4.1.89.38.29.1.4 rlDhcpRelayInterfaceListVlanId2049To3072 — 1.3.6.1.4.1.89.38.29.1.5 rlDhcpRelayInterfaceListVlanId3073To4094 — 1.3.6.1.4.1.89.38.29.1.6

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.38.29.1.3.1 x {битовая маска}
```

Пример настройки ip DHCP relay enable на vlan 1

```
Команда CLI:
Interface vlan 1
Ip dhcp relay enable
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.38.29.1.3.1 x 80000000000
```

Пример настройки ip DHCP relay enable на 1026 vlan

Команда CLI: Interface vlan 1026 Ip dhcp relay enable

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.38.29.1.4.1 x 40000000000

Пример расчета битовой маски можно посмотреть в разделе «Приложение А. Методика расчета битовой маски».

16.3 Защита IP-адреса клиента (IP source Guard)

Включение/выключение ip source quard глобально

MIB: rlbridge-security.mib

Используемые таблицы: rllpSourceGuardEnable — 1.3.6.1.4.1.89.112.2.2

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.2.2.0 i {enable(1), disable(2)}

Пример глобального включения ip source guard

Команда CLI: ip source-guard Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.112.2.2.0 i 1

Создание статической привязки ip source quard

MIB: rlbridge-security.mib

Используемые таблицы: rllpDhcpSnoopStaticTable — 1.3.6.1.4.1.89.112.1.10

snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.112.1.10.1.3.{vlan id}.{MAC in DEC. Каждый байт MAC-адреса отделяется от предыдущего точкой} a {ip address (DEC)} \ 1.3.6.1.4.1.89.112.1.10.1.4.{vlan id}.{MAC in DEC. Каждый байт MAC-адреса отделяется от предыдущего точкой} i {ifIndex} \ 1.3.6.1.4.1.89.112.1.10.1.5.{vlan id}.{MAC in DEC. Каждый байт MAC-адреса отделяется от предыдущего точкой} i {createAndGo(4), destroy(6)}

Пример привязки МАС адреса 00:11:22:33:44:55 к IP 192.168.1.34, vlan 622, интерфейсу GigabitEthernet 1/0/9

Команда CLI: ip source-guard binding 00:11:22:33:44:55 622 192.168.1.34 GigabitEthernet 1/0/9 Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.112.1.10.1.3.622.0.17.34.51.68.85 a 192.168.1.34 \ 1.3.6.1.4.1.89.112.1.10.1.4.622.0.17.34.51.68.85 i 57 \ 1.3.6.1.4.1.89.112.1.10.1.5.622.0.17.34.51.68.85 i 4

Включение/выключение ip source quard на порте

MIB: rlbridge-security.mib

Используемые таблицы: rllpSourceGuardPortTable — 1.3.6.1.4.1.89.112.2.5

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.112.2.5.1.2.<ifIndex> i {createAndGo(4), destroy(6)}
```

Пример включения ip source guard на интерфейсе GigabitEthernet 1/0/9

```
Команда CLI:
interface GigabitEthernet 1/0/9
ip source-guard
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
```

```
1.3.6.1.4.1.89.112.2.5.1.2.57 i 4
```

Включение/выключение ip source quard во vlan

MIB: eltBridgeSecurity.mib

Используемыетаблицы:eltlpSourceGuardPortTable1.3.6.1.4.1.35265.1.23.112.8.1,1.3.6.1.4.1.35265.1.23.112.8.1.1.1vlan1-1024, 1.3.6.1.4.1.35265.1.23.112.8.1.1.2vlan1025-2048,1.3.6.1.4.1.35265.1.23.112.8.1.1.3vlan2049-3072, 1.3.6.1.4.1.35265.1.23.112.8.1.1.4vlan3073-4094

snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.112.8.1.1.1.<ifindex> x {битовая маска}

Пример включения ip source guard на интерфейсе GigabitEthernet 1/0/1 во Vlan 2

16.4 Контроль протокола ARP (ARP Inspection)

Включение/выключение arp inspection глобально

MIB: rlbridge-security.mib

Используемые таблицы: rllpArpInspectEnable — 1.3.6.1.4.1.89.112.3.2

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.112.3.2.0 i {enable(1), disable (2)}
```

Пример глобального включения arp inspection

```
Команда CLI: ip arp inspection
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.3.2.0 i 1
```

Включение/выключение arp inspection во vlan

MIB: rlbridge-security.mib

Используемые таблицы: rllpArpInspectEnableVlanTable — 1.3.6.1.4.1.89.112.3.6

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.3.6.1.3.{vlan id} i {createAndGo(4), destroy(6)}
```

Пример включения arp inspection в vlan 622

```
Команда CLI: ip arp inspection vlan 622
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.3.6.1.3.622 i 4
```

Настройка доверенного порта arp inspection

MIB: rlbridge-security.mib

```
Используемые таблицы: rllpArpInspectTrustedPortRowStatus — 1.3.6.1.4.1.89.112.3.7.1.2
```

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.112.3.7.1.2.{ifIndex} i {createAndGo(4), destroy(6)}
```

Пример настройки доверенного интерфейса GigabitEthernet 1/0/2

```
Команда CLI:
interface GigabitEthernet 1/0/2
ip arp inspection trust
```

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.112.3.7.1.2.50 i 4

Привязка ip arp inspection list к vlan

MIB: rlbridge-security.mib

Используемые таблицы: rllpArpInspectAssignedListName — 1.3.6.1.4.1.89.112.3.6.1.2

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.112.3.6.1.2.{vlan id} s {list name}
```

Пример привязки листа с именем test к vlan 622

```
Команда CLI:
ip arp inspection list assign 100 test
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.3.6.1.2.622 s test
```

16.5 Проверка подлинности клиента на основе порта (802.1x)

Включение аутентификации 802.1Х на коммутаторе

MIB: dot1xPaeSystem.mib

Используемые таблицы: dot1xPaeSystemAuthControl — 1.0.8802.1.1.1.1.1.1

```
snmpset -v2c -c <community> <IP address> \
1.0.8802.1.1.1.1.1.0 i {enabled(1), disabled(2)}
```

Пример включения 802.1х

Kоманда CLI: dot1x system-auth-control

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.0.8802.1.1.1.1.1.0 i 1
```

<u>Включение периодической повторной проверки подлинности (переаутентификации)</u> клиента

MIB: draft-ietf-bridge-8021x.mib

Используемые таблицы: dot1xAuthReAuthEnabled — 1.0.8802.1.1.1.1.2.1.1.13

```
snmpset -v2c -c <community> <IP address> \
1.0.8802.1.1.1.1.2.1.1.13.{ifIndex} i {true(1), false(2)}
```

Пример включения периодической повторной проверки подлинности клиента на интерфейсе Gigabitethernet 1/0/2

```
Команда CLI:
interface gigabitethernet 1/0/2
dot1x reauthentication
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.0.8802.1.1.1.1.2.1.1.13.50 i 1
```

Установка периода между повторными проверками подлинности

MIB: draft-ietf-bridge-8021x.mib

Используемые таблицы: dot1xAuthConfigTable — 1.0.8802.1.1.1.1.2.1.1.12

```
snmpset -v2c -c <community> <IP address> \
1.0.8802.1.1.1.1.2.1.1.12.{ifIndex} u {size 300-4294967295}
```

Пример установки периода в 300 сек между повторными проверками на интерфейсе Gigabitethernet 1/0/2

```
Команда CLI:
interface gigabitethernet 1/0/2
dot1x timeout reauth-period 300
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.0.8802.1.1.1.1.2.1.1.12.50 u 300
```

Настройка режимов аутентификации 802.1Х на интерфейсе

MIB: draft-ietf-bridge-8021x.mib

Используемые таблицы: dot1xAuthConfigTable — 1.0.8802.1.1.1.1.2.1.1.6

```
snmpset -v2c -c <community> <IP address> \
1.0.8802.1.1.1.1.2.1.1.6.{ifIndex} i {force-Unauthorized(1), auto(2), force-
Authorized(3)}
```

Пример настройки аутентификации 802.1Х в режиме auto на интерфейсе Gigabitethernet 1/0/2

```
Команда CLI:
interface gigabitethernet 1/0/2
dot1x port-control auto
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.0.8802.1.1.1.1.2.1.1.6.50 i 2
```

Включение аутентификации, основанной на МАС-адресах пользователей

MIB: radlan-dot1x-mib.mib

Используемые таблицы: rldot1xAuthenticationPortTable — 1.3.6.1.4.1.89.95.10.1.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.95.10.1.1.{ifIndex} i {destroy(1), mac-and-802.1x(2), mac-
only(3)}
```

Пример включения аутентификации, основанной только на МАС-адресах на интерфейсе GigabitEthernet 1/0/3

```
Команда CLI:
interface gigabitethernet 1/0/3
dot1x authentication mac
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.95.10.1.1.51 i 3
```

Разрешение наличия одного/нескольких клиентов на авторизованном порте 802.1Х

MIB: rlInterfaces.mib

Используемые таблицы: swlfTable — 1.3.6.1.4.1.89.43.1.1.30

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.1.1.30.{ifIndex} i {single(1), none(2), multi-sessions(3)}
```

Пример разрешения наличия нескольких клиентов на интерфейсе Gigabitethernet 1/0/3

Komaндa CLI: interface Gigabitethernet 1/0/3 dot1x host-mode multi-sessions

```
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.30.51 i 3
```

<u>Включение одного или двух методов проверки подлинности, авторизации и учета (ААА)</u> для использования на интерфейсах IEEE 802.1х

MIB: rlaaa.mib

Используемые таблицы: rlAAAEapMethodListTable — 1.3.6.1.4.1.89.97.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.97.1.1.1.7.{"default" in DEC, каждая буква отделяется от
следующей точкой} s {authentication list} \1.3.6.1.4.1.89.97.1.1.2.7.{"default"
in DEC, каждая буква отделяется от следующей точкой} i {Deny(0), radius(1),
none(2)} \
1.3.6.1.4.1.89.97.1.1.3.7.{"default" in DEC, каждая буква отделяется от
следующей точкой} i {Deny(0), radius(1), none(2)} \
1.3.6.1.4.1.89.97.1.1.7.7.{"default" in DEC, каждая буква отделяется от
следующей точкой} i 1
```

Пример включения списка RADIUS-серверов для аутентификации пользователя

Команда CLI: aaa authentication dot1x default radius none

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.97.1.1.1.7.100.101.102.97.117.108.116 s default \
1.3.6.1.4.1.89.97.1.1.2.7.100.101.102.97.117.108.116 i 1 \
1.3.6.1.4.1.89.97.1.1.3.7.100.101.102.97.117.108.116 i 2 \
1.3.6.1.4.1.89.97.1.1.7.7.100.101.102.97.117.108.116 i 1

1) Для того, чтобы вернуться к настройкам по умолчанию, достаточно значения поменять на Deny(0).

2) Default переводится из ASCII в HEX с помощью таблицы, которую можно найти по ссылке <u>https://ru.wikipedia.org/wiki/ASCII</u>

Добавление указанного сервера в список используемых RADIUS серверов

MIB: rlaaa.mib

Используемые таблицы: rlRadiusServerInetTable — 1.3.6.1.4.1.89.80.8

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.80.8.1.2.1.4.{ip address (DEC)}.{default UDP port 1812}.{default
UDP port 1813} x "{ip adress(HEX)}" \
1.3.6.1.4.1.89.80.8.1.1.1.4.{ip address (DEC)}.{default UDP port 1812}.{default
UDP port 1813} i {ipv4(1), ipv6(2), ipv4z(3)} \
1.3.6.1.4.1.89.80.8.1.3.1.4.{ip address(DEC)}.{default UDP port 1812}.{default
UDP port 1813} i {default UDP port 1812} \
1.3.6.1.4.1.89.80.8.1.4.1.4.{ip address(DEC)}.{default UDP port 1812}.{default
UDP port 1813} i {default UDP port 1812} \
1.3.6.1.4.1.89.80.8.1.9.1.4.{ip address(DEC)}.{default UDP port 1812}.{default
UDP port 1813} i {default UDP port 1813} \
1.3.6.1.4.1.89.80.8.1.9.1.4.{ip address (DEC)}.{default UDP port 1812}.{default
UDP port 1813} s "#{encoding key}" \
1.3.6.1.4.1.89.80.8.1.13.1.4.{ip address (DEC)}.{default UDP port 1812}.{default
UDP port 1813} i {createAndGo(4), destroy(6)}
```

Пример

Команда CLI: radius-server host 192.168.1.10 encrypted key da90833f59be
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.80.8.1.2.1.4.192.168.1.10.1812.1813 x "c0a8010a" \
1.3.6.1.4.1.89.80.8.1.1.1.4.192.168.1.10.1812.1813 i 1 \
1.3.6.1.4.1.89.80.8.1.3.1.4.192.168.1.10.1812.1813 i 1812 \
1.3.6.1.4.1.89.80.8.1.4.1.4.192.168.1.10.1812.1813 i 1813 \
1.3.6.1.4.1.89.80.8.1.9.1.4.192.168.1.10.1812.1813 s "#da90833f59be" \
1.3.6.1.4.1.89.80.8.1.13.1.4.192.168.1.10.1812.1813 i 4

16.6 Механизм обнаружения петель (loopback-detection)

Глобальное включение loopback-detection

MIB: rllbd.mib

Используемые таблицы: rlLbdEnable — 1.3.6.1.4.1.89.127.1

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.127.1.0 i { true(1), false(2) }

Пример глобального включения loopback-detection

Команда CLI: loopback-detection enable

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.127.1.0 i 1
```

Изменение интервала loopback-detection

MIB: rllbd.mib

Используемые таблицы: rlLbdDetectionInterval — 1.3.6.1.4.1.89.127.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.127.2.0 I { seconds 1-60 }
```

Пример изменения интервала loopback-фреймов на 23 секунды

```
Команда CLI:
loopback-detection interval 23
```

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.127.2.0 i 23

Изменение режима работы loopback-detection

MIB: rllbd.mib

Используемые таблицы: rlLbdMode — 1.3.6.1.4.1.89.127.3

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.127.3.0 i {source-mac-addr(1),base-mac-addr(2), multicast-mac-
addr(3),broadcast-mac-addr (4) }
```

Пример изменения режима работы loopback-detection на source-mac-addr

Команда CLI:

loopback-detection mode src-mac-addr

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.127.3.0 i 1

Включение/отключение loopback-detection на интерфейсах

MIB: rllbd.mib

Используемые таблицы: rlLbdPortAdminStatus — 1.3.6.1.4.1.89.127.4.1.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.127.4.1.1.{ifindex} i { enable(1), disable(2)}
```

Пример включения loopback-detection на интерфейсе TengigabitEthernet1/0/2

```
Komaндa CLI:
interface TengigabitEthernet1/0/2
loopback-detection enable
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.127.4.1.1.106 i 1
```

Просмотр рабочего состояния loopback-detection на интерфейсе

MIB: rllbd.mib

Используемые таблицы: rlLbdPortOperStatus — 1.3.6.1.4.1.89.127.4.1.2

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.127.4.1.2.{ifindex}
```

Пример просмотра состояния loopback-detection на интерфейсе GigabitEthernet1/0/2

```
Команда CLI:
show loopback-detection GigabitEthernet1/0/2
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
```

```
1.3.6.1.4.1.89.127.4.1.2.50
```


При использовании snmp команды:

- 1 состояние inactive,
- 2 состояние active,
- 3 loopdetected.

Просмотр заблокированных VLAN в режиме vlan-based

MIB: rllbd.mib

Используемые таблицы: eltMesLdb — 1.3.6.1.4.1.35265.1.23.127

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.127.4.1.3.{ifindex}.{vlan}

Пример просмотра состояния vlan 2 на порте GigabitEthernet1/0/2

Команда CLI: show loopback-detection GigabitEthernet1/0/2 Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.127.4.1.3.50.2

Возможные состояния:

1 — active, 2 — blocked

16.7 Контроль широковещательного шторма (storm-control)

Настройка storm-control на интерфейсе

MIB: radlan-mib.mib

Используемые таблицы: rlStormCtrl — 1.3.6.1.4.1.89.77

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.77.12.1.2.{ifindex}.{broadcast(1),multicastRegistred(2),multicast
tUnregistred(3), multicastAll(4), unknownUnicast(5)} u {rate} \
1.3.6.1.4.1.89.77.12.1.3.{ifindex}.{broadcast(1),multicastRegistred
(2),multicastUnregistred(3),multicastAll(4),unknownUnicast(5)} I
kiloBitsPerSecond(1),precentaged(2)} \
1.3.6.1.4.1.89.77.12.1.4.{ifindex}.{broadcast(1),multicastRegistred
(2),multicastUnregistred(3), multicastAll(4), unknownUnicast(5)} i
{none(1),trap(2),shutdown(3),trapAndShutdown(4)}
```

Пример включения storm-control для broadcast-трафика на интерфейсе GigabitEthernet1/0/1

Команда CLI: interface GigabitEthernet1/0/1 storm-control broadcast kbps 10000 trap shutdown

```
Команда SNMP:
```

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.77.12.1.3.49.1 i 1 \
1.3.6.1.4.1.89.77.12.1.2.49.1 u 1000 \
1.3.6.1.4.1.89.77.12.1.4.49.1 i 4

Пример отключения storm-control для broadcast-трафика на интерфейсе GigabitEthernet1/0/1

Komaндa CLI: interface GigabitEthernet1/0/1 no storm-control broadcast

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
```

1.3.6.1.4.1.89.77.12.1.2.49.1 u 0

Включить/выключить storm-control для unknown unicast трафика

MIB: radlan-stormctrl.mib

Используемые таблицы: rlStormCtrlRateLimCfgTable — 1.3.6.1.4.1.89.77.12

snmpset -v2c -c <community> <IP address> \ iso.3.6.1.4.1.89.77.12.1.2.{ifIndex}.5 u {Kbps,отключить (0)}

Пример включения контроля неизвестного одноадресного трафика до 50 кбит/с

```
Команда CLI:
interface GigabitEthernet1/0/2
storm-control unicast Kbps 50
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.77.12.1.2.50.5 u 50

17 КОНФИГУРИРОВАНИЕ IP И МАС ACL (СПИСКИ КОНТРОЛЯ ДОСТУПА)

Создание mac access-list

MIB: qosclimib.mib

Используемые таблицы: rlQosAclTable — 1.3.6.1.4.1.89.88.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.7.1.2.{index-of-acl} s "{name-of-acl}" \
1.3.6.1.4.1.89.88.7.1.3.{index-of-acl} i {type-of-acl: mac(1), ip (2)} \
1.3.6.1.4.1.89.88.7.1.4.{index-of-acl} i {createAndGo(4), destroy(6)}
```

Пример создания MAC ACL с индексом 207

Команда CLI: mac access-list extended 7-mac

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.7.1.2.207 s "7-mac" \
1.3.6.1.4.1.89.88.7.1.3.207 i 1 \
1.3.6.1.4.1.89.88.7.1.4.207 i 4
```

<u>Создание ip access-list (ACL)</u>

MIB: qosclimib.mib

Используемые таблицы: rlQosAclTable — 1.3.6.1.4.1.89.88.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.7.1.2.{index-of-acl} s "{name-of-acl}" \
1.3.6.1.4.1.89.88.7.1.3.{index-of-acl} i {type-of-acl: mac(1), ip (2)} \
1.3.6.1.4.1.89.88.7.1.4.{index-of-acl} i {createAndGo(4), destroy(6)}
```

Пример создания IP ACL с индексом 107

```
Команда CLI:
ip access-list extended 7-ip
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.7.1.2.107 s "7-ip" \
1.3.6.1.4.1.89.88.7.1.3.107 i 2 \
1.3.6.1.4.1.89.88.7.1.4.107 i 4
```


Пример наполнения ACL правилами подробно рассмотрен в разделе «Приложение Б: Пример создания типового IP ACL».

Привязка IP или MAC ACL к порту

MIB: qosclimib.mib

Используемые таблицы: rlQosIfAclIn — 1.3.6.1.4.1.89.88.13.1.14 rlQosIfPolicyMapStatus — 1.3.6.1.4.1.89.88.13.1.13

snmpset -v2c -c <community> <IP address> \

```
1.3.6.1.4.1.89.88.13.1.14.{ifIndex}.2 i {Index-of-acl} \
1.3.6.1.4.1.89.88.13.1.13.{ifIndex}.2 i 1
```

Пример: назначаем правило с индексом 107 (название ACL 7-ip) на порт GigabitEthernet 1/0/2

```
Komaндa CLI:
interface GigabitEthernet 1/0/2
service-acl input 7-ip
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.13.1.14.50.2 i 107 \
1.3.6.1.4.1.89.88.13.1.13.50.2 i 1
```


Для удаления ACL с порта достаточно индекс ACL заменить на 0. snmpset -c -v2c private 192.168.1.301.3.6.1.4.1.89.88.13.1.14.50.2 | 0 1.3.6.1.4.1.89.88.13.1.13.50.2 | 1

Привязка IP и MAC ACL к порту

MIB: qosclimib.mib

Используемые таблицы:

 $\label{eq:rlQoslfAclin} rlQoslfAclin = 1.3.6.1.4.1.89.88.13.1.14 \\ rlQoslfIpv6Aclin = 1.3.6.1.4.1.89.88.13.1.201.3.6.1.4.1.89.88.13.1.20 \\ rlQoslfPolicyMapStatus = 1.3.6.1.4.1.89.88.13.1.13 \\$

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.13.1.14.{Ifindex}.2 i {Index-of-mac-acl} \
1.3.6.1.4.1.89.88.13.1.20.{Ifindex}.2 i {Index-of-ip-acl} \
1.3.6.1.4.1.89.88.13.1.13.{ifIndex}.2 i 1
```

Пример: назначаем правило с индексом 107 и 207 (название ACL 7-ір для IP ACL и 7-тас для MAC ACL) на порт GigabitEthernet 1/0/2 (Ifindex 50)

```
Komaндa CLI:
interface GigabitEthernet 1/0/2
service-acl input 7-mac 7-ip
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.13.1.14.50.2 i 207 \
1.3.6.1.4.1.89.88.13.1.20.50.2 i 107 \
1.3.6.1.4.1.89.88.13.1.13.50.2 i 1

Для удаления ACL с порта достаточно индекс IP и MAC ACL заменить на 0.

snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.13.1.14.50.2 i 0 \ 1.3.6.1.4.1.89.88.13.1.20.50.2 i 0 \

1.3.6.1.4.1.89.88.13.1.13.50.2 i 1

Создание policy-тар и привязка к нему ACL

MIB: qosclimib.mib

Используемые таблицы: rlQosClassMapTable — 1.3.6.1.4.1.89.88.9 rlQosPolicyMapTable — 1.3.6.1.4.1.89.88.11 rlQosPolicyClassPriorityRefTable — 1.3.6.1.4.1.89.88.39

Схема: создание policy-map проводится в несколько запросов

1. Создаем class и назначаем ему свойства snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.88.9.1.2.{index-of-class} s "{name-of-class-map}" \ 1.3.6.1.4.1.89.88.9.1.3.{index-of-class} i {matchAll (1)} \ 1.3.6.1.4.1.89.88.9.1.7.{index-of-class} i {index-of-acl} \ 1.3.6.1.4.1.89.88.9.1.9.{index-of-class} i {Mark vlan disable (1), enable(2)} \ 1.3.6.1.4.1.89.88.9.1.13.{index-of-class} i {create and go(4),destroy(6)}

2. Создаем policy-map и включаем его snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.88.11.1.2.{index-of-policy-map} s {name-of-policy-map} \ 1.3.6.1.4.1.89.88.11.1.3.{index-of-policy-map} i {createAndGo(4), destroy(6)}

3. Привязываем class-map к policy-map snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.39.1.2.1.{index-of-class} i {index-of-class} \
1.3.6.1.4.1.89.88.39.1.3.1.{index-of-class} i {index-of-policy-map}

4. Создаем ограничение скорости для class-map snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.10.1.2.{Number-of-class-in-policy} s {Policer-cm-20} \
1.3.6.1.4.1.89.88.10.1.3.{Number-of-class-in-policy} i {single(1), aggregate(2)} \
1.3.6.1.4.1.89.88.10.1.4.{Number-of-class-in-policy} i {rate} \
1.3.6.1.4.1.89.88.10.1.5.{Number-of-class-in-policy} i {burst} \
1.3.6.1.4.1.89.88.10.1.6.{Number-of-class-in-policy} i {burst} \
1.3.6.1.4.1.89.88.10.1.6.{Number-of-class-in-policy} i {none(1), drop(2), remark(3)} \
1.3.6.1.4.1.89.88.10.1.8.{Number-of-class-in-policy} i {createAndGo(4), destroy(6)}
5. Привязываем ограничение скорости к class-map
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.9.1.6.{index-of-class} i {Number-of-class-in-policy}
6. Задаем значение метки трафику DSCP и/или cos, указываем выходную очередь
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.88.5.1.1.{index-of-class}.{setDSCP(3), setQueue(4), setCos(5)} i {setDSCP(3),

setQueue(4), setCos(5)} \ 1.3.6.1.4.1.35265.1.23.88.5.1.2.{index-of-class}.{setDSCP(3), setQueue(4), setCos(5)} i {Mark value of DSCP/queue/cos(DEC)} \

1.3.6.1.4.1.35265.1.23.88.5.1.3.{index-of-class}.{setDSCP(3), setQueue(4), setCos(5)} i {createAndGo(4), destroy(6)}

```
Пример: IP ACL c index-of-acl = 107 привязывается к class-map с именем test и выставляется метка DSCP = 36(DEC), cos = 4 и queue = 8 для трафика, подпавшего под IP ACL. Class test привязывается к policy-map с именем test1
```

```
Команда CLI:
qos advanced
 ip access-list extended 7-ip
permit ip any any any any
exit
class-map test
match access-group 7-ip
exit
policy-map test1
class test
set dscp 36
set queue 8
set cos 4
police 97000 524288 exceed-action drop
exit
exit
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.9.1.2.20 s "test"
1.3.6.1.4.1.89.88.9.1.3.20 i 1 \
1.3.6.1.4.1.89.88.9.1.7.20 i 107 \
1.3.6.1.4.1.89.88.9.1.9.20 i 1 \
1.3.6.1.4.1.89.88.9.1.13.20 i 4
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.11.1.2.1 s "test1" \
1.3.6.1.4.1.89.88.11.1.3.1 i 4
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.39.1.2.1.20 i 20 \
1.3.6.1.4.1.89.88.39.1.3.1.20 i 1
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.10.1.2.1 s "Policer-cm-20" \
1.3.6.1.4.1.89.88.10.1.3.1 i 1 \
1.3.6.1.4.1.89.88.10.1.4.1 u 97000 \
1.3.6.1.4.1.89.88.10.1.5.1 u 524288 \
1.3.6.1.4.1.89.88.10.1.6.1 i 2 \
1.3.6.1.4.1.89.88.10.1.8.1 i 4
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.9.1.6.20 i 1
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.88.5.1.1.20.3 i 3 \
1.3.6.1.4.1.35265.1.23.88.5.1.2.20.3 i 36 \
1.3.6.1.4.1.35265.1.23.88.5.1.3.20.3 i 4
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.88.5.1.1.20.4 i 4 \
1.3.6.1.4.1.35265.1.23.88.5.1.2.20.4 i 8 \
1.3.6.1.4.1.35265.1.23.88.5.1.3.20.4 i 4
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.88.5.1.1.20.5 i 5 \
1.3.6.1.4.1.35265.1.23.88.5.1.2.20.5 i 4 \
1.3.6.1.4.1.35265.1.23.88.5.1.3.20.5 i 4
```

<u>Назначение Policy-тар на порт</u>

MIB: qosclimib.mib

Используемые таблицы: rlQosIfPolicyMapPointerIn — 1.3.6.1.4.1.89.88.13.1.3

snmpset -v2c -c <community> <IP address> \
 1.3.6.1.4.1.89.88.13.1.3.{Ifindex}.2 i {Index-of-policy-map}

Пример: назначаем policy-map с индексом 1 на порт GigabitEthernet 1/0/3

```
Komaндa CLI:
interface GigabitEthernet 1/0/3
service-policy input test1
```

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.13.1.3.51.2 i 1

ACUTEX

18 КОНФИГУРАЦИЯ ЗАЩИТЫ ОТ DOS-ATAK

Включение security-suite

MIB: rlSecuritySuiteMib

Используемые таблицы: rlSecuritySuiteGlobalEnable — 1.3.6.1.4.1.89.120.1

snmpset -v2c -c <community> <IP address> 1.3.6.1.4.1.89.120.1.0 i {enableglobal-rules-only (1), enable- all-rules-types (2), disable (3)}

Пример включения класса команд security-suite для всех правил

Команда CLI: security-suite enable

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.120.1.0 i 2
```

Настройка режима работы security-suite

MIB: rlSecuritySuiteMib

Используемые таблицы: rlSecuritySuiteSynProtectionMode — 1.3.6.1.4.1.89.120.10

snmpset -v2c -c <community> <IP address> 1.3.6.1.4.1.89.120.10.0 i {disabled
(1), report (2), block (3)}

Пример включения режима работы "report"

```
Команда CLI:
security-suite syn protection mode report
```

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.120.10.0 i 2

Выключить защиту от tcp-пакетов с одновременно установленными SYN- и FIN- флагами

MIB: rlSecuritySuiteMib

Используемые таблицы: rlSecuritySuiteDenySynFinTcp — 1.3.6.1.4.1.89.120.9

```
snmpset -v2c -c <community> <IP address> 1.3.6.1.4.1.89.120.9.0 i {(deny (1),
permit (2)}
```

Пример включения режима report

```
Команда CLI:
security-suite deny syn-fin
Команда SNMP:
```

```
snmpset -v2c -c private 192.168.1.30 \
```

19 КАЧЕСТВО ОБСЛУЖИВАНИЯ — QOS

19.1 Настройка QoS

Ограничение исходящей скорости на Ethernet-портах

MIB: qosclimib.mib

Используемые таблицы: rlQosIfPolicyEntry — 1.3.6.1.4.1.89.88.13.1

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.88.13.1.6.{ifindex порта}.2 i {disable(1),enable
    (1)} \
    1.3.6.1.4.1.89.88.13.1.7.{ifindex порта}.2 i {traffic-shape} \
    1.3.6.1.4.1.89.88.13.1.8.{ifindex порта}.2 i {Burst size in bytes}
```

Пример: ограничить исходящую скорость на порте до значения 20Мбит/с

```
Komaндa CLI:
interface GigabitEthernet 1/0/1
traffic-shape 20480 500000
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.13.1.6.49.2 i 2 \
1.3.6.1.4.1.89.88.13.1.7.49.2 i 20480 \
1.3.6.1.4.1.89.88.13.1.8.49.2 i 500000
```

Ограничение входящей скорости на Ethernet-портах

MIB: radlan-mib.mib

Используемые таблицы: rlStormCtrlRateLimCfgTable — 1.3.6.1.4.1.89.77.12

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.77.12.1.2.{ifIndex}.6 u {limit} \
1.3.6.1.4.1.89.77.12.1.5.{ifIndex}.6 u {Burst size in bytes}
```

Пример: ограничить входящую скорость на интерфейсе GigabitEthernet 1/0/1 до значения 10Мбит/с

Команда CLI:

```
interface GigabitEthernet 1/0/1
rate-limit 10240 burst 500000
```

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.77.12.1.2.49.6 u 10240 \
1.3.6.1.4.1.89.77.12.1.5.49.6 u 500000

Для отключения rate-limit на интерфейсе необходимо выполнить (на примере интерфейса GigabitEthernet1/0/1):

snmpset -v2c -c private 192.168.1.30 1.3.6.1.4.1.89.77.12.1.2.49.6 u 0 1.3.6.1.4.1.89.77.12.1.5.49.6 u 128000

Создание профиля gos tail-drop и расширение дескрипторов для очередей

MIB: eltQosTailDropMIB.mib

```
Используемые таблицы: eltQosTailDropProfileQueueTable — 1.3.6.1.4.1.35265.1.23.12.1.1.1
```

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.12.1.1.1.4.{Номер профиля (1-4)}.{номер очереди(1-8)}
i {size (0-400)}
```

Пример

```
Komaндa CLI:
qos tail-drop profile 2
queue 1 limit 400
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.12.1.1.1.1.4.2.1 i 400
```


Чтобы вернуться к настройкам по умолчанию достаточно установить значение равным 12

Установка размера пакетного разделяемого пула для порта

MIB: eltQosTailDropMIB.mib

```
Используемые таблицы: eltQosTailDropProfileTable — 1.3.6.1.4.1.35265.1.23.12.1.1.4
```

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.12.1.1.4.1.2{номер профиля(1-4)} i {size (0-400)}
```

Пример

```
Komaндa CLI:
qos tail-drop profile 2
port-limit 400
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.12.1.1.4.1.2.2 i 400
```

Назначение созданного профиля на интерфейс

MIB: eltQosTailDropMIB.mib

```
Используемые таблицы: eltQosTailDropIfConfigTable — 1.3.6.1.4.1.35265.1.23.12.1.1.2
```

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.12.1.1.2.1.1.{IfIndex} і {номер профиля (1-4)}
```

Пример

```
Komaндa CLI:
interface GigabitEthernet 1/0/1
qos tail-drop profile 2
```

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.12.1.1.2.1.1.49 i 2
```

Просмотр отображения глобальных лимитов, дескрипторов, буферов

MIB: radlan-mib.mib

Используемые таблицы: eltQosTailDropConfigTable — 1.3.6.1.4.1.35265.1.23.12.1.1.3

```
snmpwalk -v2c -c <community> <ip address> \
1.3.6.1.4.1.35265.1.23.12.1.1.3
```

Пример

```
Komaндa CLI:
show qos tail-drop
```

Команда SNMP:

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.12.1.1.3
```

<u>Просмотр таблицы вывода текущих аллоцированных ресурсов qos (лимитов, дескрипторов, буферов)</u>

MIB: ELTEX-MES-QOS-TAIL-DROP-MIB

Используемые таблицы: eltQosTailDropStatusTable — 1.3.6.1.4.1.35265.1.23.12.1.2.1

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.12.1.2.1

Пример

Команда CLI: show qos tail-drop

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.12.1.2.1

Перемаркировка DSCP в COS

MIB: eltQosclimib.mib

Используемые таблицы: eltQosCos — 1.3.6.1.4.1.35265.1.23.88.6.1.2

snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.88.6.1.2.{метка DSCP} і {метка COS}

Пример настройки перемаркировки DSCP 30 в метку 5 COS

```
Команда CLI:
qos map dscp-cos 30 to 5
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.88.6.1.2.30 i 5
```

19.2 Статистика QoS

Просмотр Tail Drop-счетчиков по очередям

MIB: eltMesCounters.mib

Используемые таблицы: eltMesCountersMIB — 1.3.6.1.4.1.35265.1.23.1.8

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.1.8.1.2.1.1.1.{Dropped packets(5), Passed
packets(7)}.{ifIndex}.{1-8}.0

Пример просмотра счетчиков для первой очереди

Kоманда CLI: show interface GigabitEthernet1/0/6

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.1.8.1.2.1.1.1.7.54.1.0
20 МАРШРУТИЗАЦИЯ

20.1 Статическая маршрутизация

Просмотр таблицы маршрутизации

MIB: radlan-mib.mib

Используемые таблицы: ipCidrRouteTable — 1.3.6.1.2.1.4.24.4

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.4.24.4
```

Пример

Команда CLI: show ip route

```
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.4.24.4
```

Просмотр статических маршрутов

MIB: rlip.mib

Используемые таблицы: rllpStaticRouteTable — 1.3.6.1.4.1.89.26.17.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.26.17.1
```

Пример

Komaндa CLI: show running-config routing

Команда SNMP:

```
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.26.17.1
```

20.2 Динамическая маршрутизация

<u>Просмотр соседства OSPF</u>

MIB: rlip.mib

Используемые таблицы: rlOspfNbrTable — 1.3.6.1.4.1.89.210.11

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.210.11
```

Пример

Команда CLI: show ip ospf neighbor

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.210.11

ПРИЛОЖЕНИЕ А. МЕТОДИКА РАСЧЕТА БИТОВОЙ МАСКИ

Битовые маски состоят из 128 байт (шестнадцатеричных разрядов всего 256). Каждый разряд обозначает четыре VLAN/порта. По номеру VLAN/порта определяется нужное поле.

<u> Пример 1</u>

Записать битовую маску для интерфейсов GigabitEthernet 1/0/20-21:

- для 1G интерфейсов ifIndex начинается с 49;
- для порта gi1/0/20 ifIndex равен 68, для gi1/0/21 69.

Определение номера разряда:

68/4=17 69/4=17,25 (Каждый разряд отвечает за 4 ifIndex. При делении ifindex на 4 для определения № разряда для записи, полученное значение округляется в большую сторону).

Если нам нужны порты gi0/20-21 (ifindex 68,69), то они должны быть записаны в 17 и 18 поле.

В двоичной последовательности 17 поле будет записано следующим образом 0001 (Последняя 1 - 68 индекс). Переводим в НЕХ, получаем 1.

В двоичной последовательности 18 поле будет записано следующим образом 1000 (Первая 1 - 69 индекс). Переводим в НЕХ, получаем 8.

Итого в битовой маске будет 16 нулей, 1, 8: 00000000000000018.

<u>Пример 2</u>

Записать битовую маску для vlan 622, 3100.

- 622/4=155,5 (Каждый 0 отвечает за 4 vlan. При делении vlan на 4 для определения № поля для записи округление всегда идет вверх).
 - Если нам нужен vlan 622, то он должен быть записан в 156 поле.

В двоичной последовательности 156 поле будет записано следующим образом: 0100 (вторая 1 - 622 vlan). Переводим в НЕХ, получаем 4.

Итого в битовой маске будет 155 нулей и 4:

- 3100/4=775

Требуется принять во внимание, что для указания номера VLAN берутся таблицы rldot1qPortVlanStaticEgressList1to1024 rldot1qPortVlanStaticEgressList1025to2048 rldot1qPortVlanStaticEgressList2049to3072 rldot1qPortVlanStaticEgressList3073to4094 Так как наш vlan попадает в 4 таблицу, то 775-256*3=7. Vlan 3100 будет записан в 7 поле данной таблицы. В двоичной последовательности 7 поле будет записано следующим образом: 0001 (Последняя 1 - 3100 vlan). Переводим в НЕХ, получаем 1. Итого в битовой маске будет 6 нулей и 1: 0000001.

```
AELTEX
```

ПРИЛОЖЕНИЕ Б: ПРИМЕР СОЗДАНИЯ ТИПОВОГО IP ACL

В данном приложении рассмотрен пример наполнения IP ACL c index-of-acl = 107 правилами вида:

ip access-list extended 7-ip deny udp any bootps any bootpc ace-priority 20 permit igmp any any ace-priority 40 deny ip any any any 224.0.0.0 15.255.255.255 ace-priority 60 permit ip any any 37.193.119.7 0.0.0.0 any ace-priority 80 permit ip any any 10.130.8.3 0.0.0.0 any ace-priority 100 permit ip any any 192.168.0.0 0.0.0.15 any ace-priority 120 permit ip 00:19:16:15:14:16 00:00:00:00:00:00 any 37.193.119.7 0.0.0.0 any ace-priority 140 permit ip any 01:00:0c:00:00:00 00:00:ff:ff:ff any any ace-priority 160 exit

Создание правила deny udp any bootps any bootpc

MIB: qosclimib.mib

Используемые таблицы: rlQosTupleTable — 1.3.6.1.4.1.89.88.5, rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 1} i {protocol(1)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 1} x {protocol index (HEX)} \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 1} i {Значение в таблице порта для
протокола = 0. Константа для этого правила} \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 2} i {udp-port-src(6)} \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 2} i {Source ip(HEX)} \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 3} i { udp-port-dst(6) } \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 3} i {Number of dst port (DEC)} \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 3} i {Number of dst port (DEC)} \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 3} x {dst ip(HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как deny.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {deny(2)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {udp(3)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 1} \
1.3.6.1.4.1.89.88.31.1.7.{index-of-acl}.{index-of-rule} i {значение поля 3} \
1.3.6.1.4.1.89.88.31.1.9.{index-of-acl}.{index-of-rule} i {значение поля 2}
```

Пример добавления правила deny udp any bootps any bootpc в IP ACL 7-ip (т.к. предполагается, что правило первое по счету, то index-of-rule=20)

```
Команда CLI:
ip access-list extended 7-ip
deny udp any bootps any bootpc ace-priority 20
exit
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.1 i 1 \
```

1.3.6.1.4.1.89.88.5.1.4.1 x "0x11 FF" \
1.3.6.1.4.1.89.88.5.1.3.1 i 0 \
1.3.6.1.4.1.89.88.5.1.2.2 i 6 \
1.3.6.1.4.1.89.88.5.1.3.2 i 67 \
1.3.6.1.4.1.89.88.5.1.4.2 x "0x00 00" \
1.3.6.1.4.1.89.88.5.1.2.3 i 7 \
1.3.6.1.4.1.89.88.5.1.3.3 i 68 \
1.3.6.1.4.1.89.88.5.1.4.3 x "0x00 00"
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.107.20 i 2 \
1.3.6.1.4.1.89.88.31.1.5.107.20 i 1 \
1.3.6.1.4.1.89.88.31.1.7.107.20 i 2 \
1.3.6.1.4.1.89.88.31.1.9.107.20 i 3

<u>Создание правила permit iqmp any any</u>

MIB: qosclimib.mib

Используемые таблицы: rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 4} i {protocol(1)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 4} x {protocol index (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit. snmpset -v2c -c <community> <IP address> \

```
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {igmp (8)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 4}
```

Пример добавления правила permit igmp any any в IP ACL 7-ip (т.к. предполагается, что правило второе по счету, то index-of-rule=40)

```
Команда CLI:

ip access-list extended 7-ip

permit igmp any any ace-priority 40

exit

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.88.5.1.2.4 i 1 \

1.3.6.1.4.1.89.88.5.1.4.4 x "0x02 FF"

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.88.31.1.3.107.40 i 1 \

1.3.6.1.4.1.89.88.31.1.4.107.40 i 8 \

1.3.6.1.4.1.89.88.31.1.5.107.40 i 4
```

Создание правила deny ip any any any 224.0.0.0 15.255.255.255

MIB: qosclimib.mib

Используемые таблицы: rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 5} i {ip-dest(3)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 5} x {dst ip +wildcard mask (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как deny.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {deny (2)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 5}
```

Пример добавления правила deny ip any any any 224.0.0.0 15.255.255.255 в IP ACL 7-ip (т.к. предполагается, что правило третье по счету, то index-of-rule=60)

```
Команда CLI:
ip access-list extended 7-ip
deny ip any any any 224.0.0.0 15.255.255.255 ace-priority 60
exit
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.5 i 3 \
1.3.6.1.4.1.89.88.5.1.4.5 x "0xE0 00 00 00 0F FF FF FF"
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.107.60 i 2 \
1.3.6.1.4.1.89.88.31.1.4.107.60 i 1 \
1.3.6.1.4.1.89.88.31.1.5.107.60 i 5
```

Создание правила permit ip any any 37.193.119.7 0.0.0.0 any

MIB: qosclimib.mib

Используемые таблицы: rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 6} i {ip-source(2)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 6} x {source ip +wildcard mask (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 6}
```

Пример добавления правила permit ip any any 37.193.119.7 0.0.0.0 any в IP ACL 7-ip (т.к. предполагается, что правило четвертое по счету, то index-of-rule=80)

```
Команда CLI:

ip access-list extended 7-ip

permit ip any any 37.193.119.7 0.0.0.0 any ace-priority 80

exit

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.88.5.1.2.6 i 2 \

1.3.6.1.4.1.89.88.5.1.4.6 x "0x25 c1 77 07 00 00 00 00"

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.88.31.1.3.107.80 i 1 \

1.3.6.1.4.1.89.88.31.1.4.107.80 i 1 \
```

Создание правила permit ip any any 10.130.8.3 0.0.0.0 any

MIB: qosclimib.mib

```
Используемые таблицы:
rlQosTupleTable — 1.3.6.1.4.1.89.88.5
```

rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

1.3.6.1.4.1.89.88.31.1.6.107.80 i 6

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 7} i {ip-source(2)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 7} x {source ip +wildcard mask (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit snmpset -v2c -c <community> <IP address> \

```
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 7}
```

Пример добавления правила permit ip any any 10.130.8.3 0.0.0.0 any в IP ACL 7-ip (т.к. предполагается, что правило пятое по счету, то index-of-rule=100)

```
Команда CLI:
ip access-list extended 7-ip
permit ip any any 10.130.8.3 0.0.0.0 any ace-priority 100
exit
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.7 i 2 \
1.3.6.1.4.1.89.88.5.1.4.7 x "0x0A 82 08 03 00 00 00 00"
```

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.107.100 i 1 \
1.3.6.1.4.1.89.88.31.1.4.107.100 i 1 \
1.3.6.1.4.1.89.88.31.1.6.107.100 i 7

Создание правила permit ip any any 192.168.0.0 0.0.0.15 any

MIB: qosclimib.mib

Используемые таблицы:

rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 8} i {ip-source(2)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 8} x {source ip +wildcard mask (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 8}
```

Пример добавления правила permit ip any any 192.168.0.0 0.0.0.15 any в IP ACL 7-ip (т.к. предполагается, что правило шестое по счету, то index-of-rule=120)

```
Команда CLI:

ip access-list extended 7-ip

permit ip any any 192.168.0.0 0.0.0.15 any ace-priority 120

exit

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.88.5.1.2.8 i 2 \

1.3.6.1.4.1.89.88.5.1.4.8 x "0xC0 A8 00 00 00 00 00 0F"

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.88.31.1.3.107.120 i 1 \

1.3.6.1.4.1.89.88.31.1.4.107.120 i 1 \

1.3.6.1.4.1.89.88.31.1.6.107.120 i 8
```

Создание правила permit ip 00:19:16:15:14:16 00:00:00:00:00:00 any 37.193.119.7 0.0.0.0 any

MIB: qosclimib.mib

Используемые таблицы:

rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 9} i {ip-source(2)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 9} x {source ip +wildcard mask (HEX)} \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 10} i {mac-src(10)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 10} x {source mac +wildcard mask (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 9} \
1.3.6.1.4.1.89.88.31.1.6.{index-of-acl}.{index-of-rule} i {значение поля 10}
```

Пример добавления правила permit ip 00:19:16:15:14:16 00:00:00:00:00:00 any 37.193.119.7 0.0.0.0 any в IP ACL 7-ip (т.к. предполагается, что правило седьмое по счету, то index-of-rule=140)

```
Команда CLI:
```

```
ip access-list extended 7-ip
permit ip 00:19:16:15:14:16 00:00:00:00:00 any 37.193.119.7 0.0.0.0 any ace-
priority 140
exit

Komanga SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.9 i 2 \
1.3.6.1.4.1.89.88.5.1.2.10 i 10 \
1.3.6.1.4.1.89.88.5.1.4.10 x "0x0019161514160000000000"
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.107.140 i 1 \
1.3.6.1.4.1.89.88.31.1.5.107.140 i 1 \
1.3.6.1.4.1.89.88.31.1.5.107.140 i 1 \
1.3.6.1.4.1.89.88.31.1.6.107.140 i 10
```

<u>Создание правила permit ip any 01:00:0c:00:00 00:00:00:ff:ff:ff any any</u>

MIB: qosclimib.mib

Используемые таблицы:

rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

```
snmpset -v2c -c <community> <IP address> \
.{значение поля 11} i {mac-dest (11)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 11} x {dst mac +wildcard mask (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit.

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
    1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
    1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 11}
```

Aeltex

Пример добавления правила permit ip any 01:00:0c:00:00:00 00:00:00:ff:ff:ff any any в IP ACL 7-ip (т.к. предполагается, что правило восьмое по счету, то index-of-rule=160)

Команда CLI: ip access-list extended 7-ip permit ip any 01:00:0c:00:00 00:00:00:ff:ff:ff any any ace-priority 160 exit Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.5.1.2.11 i 11 \ 1.3.6.1.4.1.89.88.5.1.4.11 x "0x01000c000000000ffffff" snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.31.1.3.107.160 i 1 \ 1.3.6.1.4.1.89.88.31.1.4.107.160 i 1 \ 1.3.6.1.4.1.89.88.31.1.5.107.160 i 1 \

ПРИЛОЖЕНИЕ В: ПРИМЕР СОЗДАНИЯ, НАПОЛНЕНИЯ И УДАЛЕНИЯ OFFSET-LIST С ПРИВЯЗКОЙ К MAC ACL

В данном приложении рассмотрен пример создания и наполнения MAC ACL c index-of-acl = 207 правилами вида:

mac access-list extended 7-mac offset-list PADO 12 12 00 88 12 13 00 63 12 15 00 07 deny any any offset-list PADO ace-priority 20

Создание mac access-list

MIB: qosclimib.mib

Используемые таблицы: rlQosAclTable — 1.3.6.1.4.1.89.88.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.7.1.2.{index-of-acl} s "{name-of-acl}" \
1.3.6.1.4.1.89.88.7.1.3.{index-of-acl} i {type-of-acl: mac(1), ip (2)} \
1.3.6.1.4.1.89.88.7.1.4.{index-of-acl} i {createAndGo(4), destroy(6)}
```

Пример создания MAC ACL с индексом 207

Команда CLI: mac access-list extended 7-mac

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.7.1.2.207 s "7-mac" \ 1.3.6.1.4.1.89.88.7.1.3.207 i 1 \ 1.3.6.1.4.1.89.88.7.1.4.207 i 4

Создание offset-list

MIB: qosclimib.mib

Используемые таблицы: rlQosOffsetTable — 1.3.6.1.4.1.89.88.4 eltMesQosCliMib — 1.3.6.1.4.1.35265.1.23.88

Пример создания offset-list PADO |2 12 00 88 |2 13 00 63 |2 15 00 07:

Создание правила производится в два запроса.

1. Задаются параметры правила

```
snmpset -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.88.4.1.2.{значение поля 1 в offset-list} i {layer2-start(2) -

указание заголовка пакета или отдельных параметров заголовка} \

1.3.6.1.4.1.89.88.4.1.3.{значение поля 1 в offset-list} i {Порядковый номер

байта в заголовке} \

1.3.6.1.4.1.89.88.4.1.4.{значение поля 1 в offset-list} i {WildcardMask в байте

в DEC} \

1.3.6.1.4.1.89.88.4.1.5.{значение поля 1 в offset-list} i {Значение байта с

учетом WildcardMask в DEC} \
```

Aeltex

1.3.6.1.4.1.89.88.4.1.7. (значение поля 1 в offset-list) i {createAndGo(4), destroy(6) } 1.3.6.1.4.1.89.88.4.1.2. {значение поля 2 в offset-list} i {layer2-start(2) указание заголовка пакета или отдельных параметров заголовка} \ 1.3.6.1.4.1.89.88.4.1.3. (значение поля 2 в offset-list) і {Порядковый номер байта в заголовке} \ 1.3.6.1.4.1.89.88.4.1.4.{значение поля 2 в offset-list} і {WildcardMask в байте в DEC} \ 1.3.6.1.4.1.89.88.4.1.5. (значение поля 2 в offset-list) і {Значение байта с учетом WildcardMask в DEC} \ 1.3.6.1.4.1.89.88.4.1.7.{значение поля 2 в offset-list} i {createAndGo(4), destroy(6) } 1.3.6.1.4.1.89.88.4.1.2.{значение поля 3 в offset-list} i {layer2-start(2) указание заголовка пакета или отдельных параметров заголовка} \ 1.3.6.1.4.1.89.88.4.1.3. (значение поля 3 в offset-list) і {Порядковый номер байта в заголовке} \

1.3.6.1.4.1.89.88.4.1.4.{значение поля 3 в offset-list} i {WildcardMask в байте в DEC} \ 1.3.6.1.4.1.89.88.4.1.5.{значение поля 3 в offset-list} i {Значение байта с учетом WildcardMask в DEC} \ 1.3.6.1.4.1.89.88.4.1.7.{значение поля 3 в offset-list} i {createAndGo(4), destroy(6)}

2. Привязка offset-list по названию к индексу ACL (index-of-acl).

snmpset -v2c -c <community> <IP address> \setminus 1.3.6.1.4.1.35265.1.23.88.1.1.1.{index-of-acl}.{Количество букв в названии offset-list}.{Haзвaниe offset-list in DEC, каждая буква назвaния отделяется от следующей точкой} і {index-of-acl} 1.3.6.1.4.1.35265.1.23.88.1.1.3. {index-of-acl}. {Количество букв в названии offset-list }. {Название offset-list in DEC, каждая буква названия отделяется от следующей точкой} і {значение поля 1 в offset-list} \ 1.3.6.1.4.1.35265.1.23.88.1.1.4.{index-of-acl}.{Количество букв в названии offset-list}.{Haзвание offset-list in DEC, каждая буква названия отделяется от следующей точкой} і {значение поля 2 в offset-list} \ 1.3.6.1.4.1.35265.1.23.88.1.1.5.{index-of-acl}.{Количество букв в названии offset-list}. {Название offset-list in DEC, каждая буква названия отделяется от следующей точкой} і {значение поля 3 в offset-list} \ 1.3.6.1.4.1.35265.1.23.88.1.1.8.{index-of-acl}.{Количество букв в названии offset-list}. {Название offset-list in DEC, каждая буква названия отделяется от следующей точкой} i {createAndGo(4), destroy(6)}

Пример добавления правила deny udp any bootps any bootpc в MAC ACL 7-mac (т.к. предполагается, что правило первое по счету, то index-of-rule=20)

```
Команда CLI:
mac access-list extended 7-mac
offset-list PADO 12 12 00 88 12 13 00 63 12 15 00 07
exit
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.4.1.2.1 i 2 \
1.3.6.1.4.1.89.88.4.1.3.1 i 12 \
1.3.6.1.4.1.89.88.4.1.4.1 i 0 \
1.3.6.1.4.1.89.88.4.1.5.1 i 136 \
1.3.6.1.4.1.89.88.4.1.7.1 i 4 \
1.3.6.1.4.1.89.88.4.1.2.2 i 2 \
1.3.6.1.4.1.89.88.4.1.3.2 i 13 \
1.3.6.1.4.1.89.88.4.1.4.2 i 0 \
1.3.6.1.4.1.89.88.4.1.5.2 i 99 \
1.3.6.1.4.1.89.88.4.1.7.2 i 4 \
```

```
1.3.6.1.4.1.89.88.4.1.2.3 i 2 \
1.3.6.1.4.1.89.88.4.1.3.3 i 15 \
1.3.6.1.4.1.89.88.4.1.4.3 i 0 \
1.3.6.1.4.1.89.88.4.1.5.3 i 7 \
1.3.6.1.4.1.89.88.4.1.7.3 i 4
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.88.1.1.1.207.4.80.65.68.79 i 207 \
1.3.6.1.4.1.35265.1.23.88.1.1.3.207.4.80.65.68.79 i 1 \
1.3.6.1.4.1.35265.1.23.88.1.1.4.207.4.80.65.68.79 i 2 \
1.3.6.1.4.1.35265.1.23.88.1.1.5.207.4.80.65.68.79 i 3 \
1.3.6.1.4.1.35265.1.23.88.1.1.8.207.4.80.65.68.79 i 4
```


Название offset-list переводится из ASCII в HEX с помощью таблицы, которую можно найти по ссылке https://ru.wikipedia.org/wiki/ASCII

Создание правила deny any any offset-list PADO

MIB: qosclimib.mib

Используемые таблицы:

rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable —1.3.6.1.4.1.89.88.31

Создание правила проводится в два запроса:

1. Задаются параметры правила

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 1 в ACL} і {general(15)} \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 2 в ACL} і {general(15)} \
1.3.6.1.4.1.89.88.5.1.2. {значение поля 2 в ACL} і {general(15)} \
1.3.6.1.4.1.89.88.5.1.3. (значение поля 1 в ACL) і (значение поля 1 в offset-
list} \
1.3.6.1.4.1.89.88.5.1.3. (значение поля 2 в ACL) і (значение поля 2 в offset-
list} ∖
1.3.6.1.4.1.89.88.5.1.3. (значение поля 3 в ACL) і (значение поля 3 в offset-
list} \
1.3.6.1.4.1.89.88.5.1.5.{значение поля 1 в ACL} i {createAndGo(4), destroy(6)}
1.3.6.1.4.1.89.88.5.1.5.{значение поля 2 в ACL} i {createAndGo(4), destroy(6)}
1.3.6.1.4.1.89.88.5.1.5. {значение поля 3 в ACL} i {createAndGo(4), destroy(6)}
2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl)
как deny
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {deny(2)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {mac(5)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} і {значение поля 1 в
ACL} \
1.3.6.1.4.1.89.88.31.1.6.{index-of-acl}.{index-of-rule} і {значение поля 2 в
ACL} \
1.3.6.1.4.1.89.88.31.1.7.{index-of-acl}.{index-of-rule} і {значение поля 3 в
ACL }
```

Пример добавления правила deny any offset-list PADO в MAC ACL 7-mac (т.к. предполагается, что правило первое по счету, то index-of-rule=20)

Команда CLI: mac access-list extended 7-mac deny any any offset-list PADO ace-priority 20

exit

```
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.1 i 15
1.3.6.1.4.1.89.88.5.1.2.2 i 15 \
1.3.6.1.4.1.89.88.5.1.2.3 i 15 \
1.3.6.1.4.1.89.88.5.1.3.1 i 1
1.3.6.1.4.1.89.88.5.1.3.2 i
                             2
1.3.6.1.4.1.89.88.5.1.3.3 i
                             3
                               \backslash
1.3.6.1.4.1.89.88.5.1.5.1 i 4 \
1.3.6.1.4.1.89.88.5.1.5.2 i 4 \
1.3.6.1.4.1.89.88.5.1.5.3 i 4
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.207.20 i 2 \
1.3.6.1.4.1.89.88.31.1.4.207.20 i 5 \
1.3.6.1.4.1.89.88.31.1.5.207.20 i 1 \
1.3.6.1.4.1.89.88.31.1.6.207.20 i 2 \
1.3.6.1.4.1.89.88.31.1.7.207.20 i 3
```

Создание правила в MAC ACL на основе EtherType

MIB: qosclimib.mib

Используемые таблицы: rlOosTupleTable — 1 3 6 1 4 1 89

rlQosTupleTable — 1.3.6.1.4.1.89.88.5 rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила

```
snmpset -v2c -c <community> <IP address> \

1.3.6.1.4.1.89.88.5.1.2.{значение поля 1} i {mac-src(10), mac-dest(11),

vlan(12)} \

1.3.6.1.4.1.89.88.5.1.4.{значение поля 1} x {protocol index (HEX)} \

1.3.6.1.4.1.89.88.5.1.3.{значение поля 1} i {Значение в таблице порта для

протокола = 0. Константа для этого правила} \

1.3.6.1.4.1.89.88.5.1.2.{значение поля 2} i {ether-type(17)} \

1.3.6.1.4.1.89.88.5.1.3.{значение поля 2} i {ether-type (DEC)} \

1.3.6.1.4.1.89.88.5.1.4.{значение поля 2} x {Hyлевое поле - константа}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit.

```
snmpset -v2c -c <community> <IP address> \
.1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit(1)
.1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {mac(5)} \
.1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 1} \
.1.3.6.1.4.1.89.88.31.1.9.{index-of-acl}.{index-of-rule} i {значение поля 2}
```

Пример добавления правила permit 00:1f:c6:8b:c6:8a 00:00:00:00:00:00 any 806 0000 в MAC ACL 7mac (т.к. предполагается, что правило первое по счету, то index-of-rule=20)

```
Команда CLI:
mac access-list extended 7-mac
permit 00:1f:c6:8b:c6:8a 00:00:00:00:00:00 any 806 0000 ace-priority 20
exit
```

Aeltex

Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.5.1.2.1 i 10 \ 1.3.6.1.4.1.89.88.5.1.4.1 x "0x001fc68bc68a00000000000" \ 1.3.6.1.4.1.89.88.5.1.3.1 i 0 1.3.6.1.4.1.89.88.5.1.2.2 i 17 \ 1.3.6.1.4.1.89.88.5.1.3.2 i 2054 \ 1.3.6.1.4.1.89.88.5.1.4.2 x "0x00 00" snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.31.1.3.207.20 i 1 \ 1.3.6.1.4.1.89.88.31.1.4.207.20 i 5 \ 1.3.6.1.4.1.89.88.31.1.5.207.20 i 1 \ 1.3.6.1.4.1.89.88.31.1.9.207.20 i 2

ТЕХНИЧЕСКАЯ ПОДДЕРЖКА

Для получения технической консультации по вопросам эксплуатации оборудования ООО «Предприятие «ЭЛТЕКС» вы можете обратиться в Сервисный центр компании:

Форма обратной связи на сайте: https://eltex-co.ru/support/ Servicedesk: https://servicedesk.eltex-co.ru/

На официальном сайте компании вы можете найти техническую документацию и программное обеспечение для продукции ООО «Предприятие «ЭЛТЕКС», обратиться к базе знаний, оставить интерактивную заявку или проконсультироваться у инженеров Сервисного центра на техническом форуме:

Официальный сайт компании: https://eltex-co.ru/ Технический форум: https://eltex-co.ru/forum База знаний: https://docs.eltex-co.ru/display/EKB/Eltex+Knowledge+Base Центр загрузок: https://eltex-co.ru/support/downloads